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Helium crystals have long been studied as prototype quantum solids, due to the large zero-

point motion of the atoms. This large motion causes the harmonic approximation of non-interacting

phonons in the crystal to become severely strained, and the multi-phonon processes present have

been hard to account for in theory and computation. The measurement of the mean square atomic

deviation of helium can give insight into its anharmonic nature.

X-ray synchrotron radiation was used to measure Debye-Waller factors of helium. Helium

crystals were grown in a beryllium cell at a high pressure and low temperature, through the use

of a refrigerator. Both 3He and 4He crystals in the hcp and fcc phases were studied. The range of

molar volumes used for investigating 3He and 4He crystals was 11.52–12.82 cm3 and 10.95–12.13

cm3, respectively. The temperature ranges used were 11.5–18.2 K and 12.0–20.3 K, respectively.

The Debye-Waller measurements were used to determine the mean square atomic deviation, the

equivalent Debye temperature, and the Lindemann ratio for each measurement.

The measured results agree well with computational values, made using path integral Monte

Carlo methods. The Lindemann ratios were around 0.19 for both isotopes, with the 3He values

being larger at similar densities. A 3He-4He mass-scaling factor of
√

4/3 for the equivalent Debye

temperature for the measured Debye-Waller factor was observed. This Debye temperature falls

with increasing temperature, contrary to what would be expected for a quasi-harmonic model,

most likely due to multi-phonon processes being present in the crystals.
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Chapter 1

Introduction

1.1 The Quantum Nature of Helium Crystals

Helium has been a very interesting element to study over the years, for many reasons. A helium

atom is simple from a structure standpoint, with only two electrons (and protons); the two electrons

compose a filled, spherically symmetric electronic shell, making it very unreactive with other atoms.

As a gas, the formation of diatomic molecules is limited by mass-action considerations, and no

excited vibrational states have been identified [1]. It has either one or two neutrons, and both

isotopes are stable. From a quantum mechanical standpoint, it is second only to the hydrogen

atom in its simplicity. However, when it comes to forming liquids or crystals, helium becomes one

of the most difficult elements to understand and predict. The discussion of crystals is strongly

influenced by Dobbs [2].

The phase diagrams of the two isotopes are very different at lower pressure and temperature,

primarily in the bcc phase. The 4He phase diagram has a very small region of bcc phase that is

bounded on all sides by either hcp phase solid or fluid; the 3He phase diagram has a much larger

region of bcc phase, only partially surrounded by hcp phase solid and fluid, as it extends to zero

temperature. These differences of the phase diagrams are due to the zero-point energy of the nuclei

and the differing atomic masses.

In the case of liquids, the enormous variety of phenomena is remarkable [3]. For each isotope,

there are both normal liquids and also superfluid phases, persistent to absolute zero at pressures

below tens of atmospheres.

In the case of solids, the main complication is the zero-point energy of the atoms. The basic

theory of phonons in solids is founded on the principle that the potential applicable to an individual

atom, due to the surrounding atoms, is parabolic in nature to a good approximation; this is known

as the harmonic approximation. The atoms vibrate, which comes from the zero-point energies of
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the atoms and the thermal energy of the crystal. The harmonic approximation works as long as

the ratio of atomic vibrational amplitude to interatomic distance is kept small; a quantity of this

type normally used for this is the Lindemann ratio,

Lindemann Ratio ≡
√
〈u3

2〉
r

, (1.1)

where 〈u3
2〉 is the three-dimensional mean square deviation of the atom from its equilibrium posi-

tion, and r is the nearest atomic neighbor distance. In usual solids, this ratio is a few percent.

The atoms of a noble gas have closed electronic shells and a spherical symmetry. The crystals

form from the weak van der Waals attraction, where two atoms are attracted to each other by the

dipoles induced in the other’s electronic distribution, which goes as r−6 where r is the distance

between the two atoms. This attraction is countered by the repulsion of the two atoms’ electronic

clouds, as electrons of the same spin can’t occupy the same position due to the Pauli exclusion

principle. A model used to express this potential is the Lennard-Jones potential,

Φ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

, (1.2)

where σ represents the “hard core” radius of the atom and ε represents the binding energy of the

pair. For helium, Aziz et al. determined these parameters as σ = 2.556 Å and ε = 10.22 kBK [4].

A graph of the Lennard-Jones potential for the noble gases is in Fig. 1.1.

A measure of the quantum nature of a crystal is the reduced de Broglie wavelength [6],

Λ∗ =
h

σ
√

mε
. (1.3)

This dimensionless parameter, used to express the zero-point energy, is larger for crystals that are

more quantum in nature. Λ∗ for helium is 3.08 (3He) and 2.68 (4He). For comparison, the value

for Ne is 0.594 and for Ar is 0.186 [5].

The molar volume of the crystal is also affected by the zero-point motion, which tends to expand

the crystal. If the Lennard-Jones potential is used to compute the molar volume of a helium crystal,

while ignoring the zero-point energy, it would have a value of 12 cm3 at zero pressure. However,

helium doesn’t even solidify unless an external pressure is applied. If the lowest pressure needed

2
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Figure 1.1: Lennard-Jones potentials for He and the other noble gases. The L-J potential is
Φ(r) = 4ε[(σ/r)12− (σ/r)6], where r is the internuclear separation. The values for ε and σ are from
Aziz et al. [5]
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to create a crystal is used, the two different isotopic crystals will have a molar volumes of 25 cm3

(3He) and 21 cm3 (4He), which is still much higher than expected. If a reduced atomic volume is

introduced [6],

V ∗ =
V

NA σ3
, (1.4)

where V is the measured molar volume, it can be used to indicate how much larger the molar

volume is, compared to a classically expected value. The resulting V ∗ values for helium are roughly

2.6 (3He) and 2.1 (4He), while they are close to unity for Ar and Ne.

This expansion can be shown, using the harmonic oscillator potential and the quantum me-

chanical solution. For a particle in a harmonic oscillator [7], the zero-point energy is h̄ω/2, where

ω is the quantum frequency. This frequency has an inverse mass dependence, ω ∝ m−1/2, making

lighter atoms have a larger zero-point energy. This larger zero-point energy in turn results in a

larger mean square deviation of the particle inside the potential. This deviation, in terms of a crys-

tal, will cause the atoms, with their encompassing electronic distributions, to push each other away

from the classical distances, resulting in an expansion of the crystal from its classical value. The

lighter the atom, the larger the crystal expansion. For crystals that have a weak binding energy,

such as the noble gases with the van der Waals force, this expansion is even more pronounced. Since

helium is the lightest noble gas, its volume is expanded more than any other elemental crystal.

The large zero-point energy of the atoms causes significant overlap of the electronic wave

functions. Helium has a spherical, filled outer shell, making such an overlap repulsive due to the

Pauli exclusion principle. The Lennard-Jones potential, useful as a qualitative tool, falls short in

several respects. This potential has too stiff of a repulsive term for helium. This potential also

does not give a good fit to empirical data. Several different potentials have been used, but the

best description is the HFD (Hartree-Fock plus damped dispersion) potential, proposed by Aziz et

al. [4, 5].

If for an assumed static helium crystal of a sufficiently large actual molar volume, the poten-

tial applicable to an atom due to all the surrounding atoms is summed from the individual pair

potentials, the result is a local maximum at the supposed equilibrium site (which is explained in

more detail in several books [8, 9]). This “bump” in the middle makes this total potential very

anharmonic, especially since the atom would be at an unstable site. If conventional harmonic

Born-von Kármán theory is applied to the potential, the resulting phonon frequencies are imagi-
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nary for the entire Brillouin zone [10]. This failure is not borne out by experiment, since inelastic

scattering using both neutrons and X-rays has been used to directly measure the dispersion curves

of the phonons in both 3He and 4He (discussed in Chapter 5). The problem comes from the model

assuming that the atoms are static at the equilibrium positions, which is unrealistic since there is

a large zero-point energy for the atoms. If the molar volume decreases, this bump disappears, and

the total potential becomes less anharmonic. Helium at high pressures and the other noble gases

are in this regime.

The method developed by Born and Hooton to take the anharmonic well and the large zero-

point energy into account was SCP (self-consistent phonon) theory, which is described fully in

several books [8, 9, 11]. With this method, the atom is represented by a distribution, not by a

point. It discards the total potential as calculated from a static lattice of atoms, and calculates the

total potential as coming from atoms with an atomic distribution identical to that of the atom in

question. A trial wave function with adjustable parameters is used with some starting values, and

these values are refined by use of a variational principle. Such models work well for the heavier noble

gases, but they begin to break down with helium [8]. These models have been produced for helium

with various degrees of self-consistency, but they generally address some specific phonon issue,

such as heat capacity, thermal expansion, etc. None have been applied to overall Debye-Waller

measurements.

Other computational techniques have been developed to compute various properties of quan-

tum solids. These are GFMC (Green function Monte Carlo) [12] applicable to the ground state,

and PIMC (path integral Monte Carlo) [13] applicable at finite temperatures. PIMC computations

provide the best theoretical agreement to the average kinetic energy of a nucleus measured with

neutron Compton scattering [14]. Recent PIMC work, done in conjunction with this thesis, has

shown that larger sample sizes than previously used in calculations are needed in order to agree

with direct 〈u2〉 measurements [15].

1.2 Phase Diagram

Solid helium exists in three different forms for both 3He and 4He: hcp, bcc, and fcc. The actual

form of the phase diagrams differs substantially at low pressures and temperatures. A listing of

the measured values discussed in this section is in Appendix D.2.

5



For 3He, there is a substantial region of bcc phase at the lowest pressures of the solid. At

higher pressures, above the bcc-hcp-liquid triple point, there exists a huge region of hcp phase. At

higher pressures, above the hcp-fcc-liquid triple point, there exists a narrow fcc phase that widens

as pressure increases.

For 4He, the phase is hcp at the lowest pressures of the solid. A very narrow region of bcc

phase exists at slightly higher pressures, extending from one hcp-bcc-liquid triple point to another.

At higher pressures, a region of fcc phase similar to that of 3He exists, but it has been seen recently

that this fcc region closes in upon itself at very high pressures [16], giving two hcp-fcc-liquid triple

points.

The hcp-fcc transition for both isotopes are similar in shape and nature. At the hcp-fcc-liquid

triple point, the transition is sharp, but as the pressure increases, a hysteresis in the phase trans-

formation appears and becomes more pronounced with rising pressure. After an initial curvature

in this transition curve above the triple point, the curve becomes fairly straight within the region

of hysteresis for the pressures studied in this thesis.

A graph of the phase diagrams for both 3He and 4He, with the pressure and temperature

ranges applicable to this thesis, is given in Fig. 1.2. The melting curves for 3He and 4He come from

Mills and Grilly [17]. The approximate fcc-hcp transition line for 3He comes from Ryschkewitsch

et al. [18], while the line for 3He comes from Franck [19].

1.3 Experimental Overview

Using X-rays it is possible to measure the mean squared atomic displacement, 〈u2〉, for a helium

crystal directly, as well as the nearest neighbor distances, enabling a Lindemann ratio to be found.

The 〈u2〉 is found by means of the Debye-Waller factor, M , which gives a relationship for the

scattered intensity as

ln
(

I

I0

)
∝ −2M(Q) ≡ −Q2〈u2〉 , (1.5)

where I0 and I are the initial and scattered intensities, and Q is the magnitude of the change of

wave vector between an incoming photon and a scattered photon.

For a crystal at a constant temperature, (I/I0) is measured for several different reflections of

differing Q values. A linear relation between ln(I/I0) and Q2 should be seen, where the negative
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Figure 1.2: Phase diagram of both 3He and 4He for the pressure and temperature ranges applicable
to this thesis. The melting curves for 3He and 4He come from Mills and Grilly [17]. The hcp-
fcc transition lines are shown schematically for 3He [18] and 4He [19]. The real solids show a
hysteresis in this phase transformation, which increases with increasing pressure. Also, very near
the respective triple points the actual texture of a given sample depends upon the thermal and
pressure history of the sample. The triple point for 3He is 17.8 K and 158.0 MPa, while for 4He it
is 14.9 K and 111.6 MPa.
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of the slope is the 〈u2〉 value for the crystal. The Debye temperature is calculated by means of

T 〈u2〉 =
3h̄2

mkB

[
1
4x

+
1
x3

∫ x

0

ε dε

eε − 1

]
and x ≡ ΘM

T
. (1.6)

The temperature dependence of the Debye temperature can be found by taking Debye-Waller

measurements for the same crystal at different temperatures.

The goals of this thesis are fourfold. One is to carry out the first direct measurements of the

Debye-Waller factor for 3He, in both hcp and fcc phases, resulting in values for the mean square

atomic deviation, 〈u2〉, and the corresponding Debye temperature, ΘM . The next goal is to make

similar direct measurements for 4He, for comparison, in both the hcp and fcc phases. Temperature

dependencies of both 〈u2〉 and ΘM are to be studied for both 3He and 4He. The last goal is to

compare the measured values to values computed using path integral Monte Carlo techniques.
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Chapter 2

Theory

2.1 X-ray Diffraction

Extensive use of X-ray diffraction has been made with this experiment. This section is strongly

influenced by Warren [1].

2.1.1 Elastic Scattering

Elastic X-ray diffraction is very similar to interference patterns using visible light and a periodic

grating, and several analogies can be made between the two.

In the case of visible light, photons are scattered by a periodic grating, such as slits for one

dimension or holes for two dimensions. On the far side of this grating, the waves from different

slits combine together, and because of the periodicity of the grating, the waves interfere either

constructively or destructively. This interference results in bands if a one dimensional grating was

used, or in dots if a two dimensional grating was used. The higher the number of apertures in the

grating, the better the resolution of the resulting peaks.

In the case of X-ray diffraction, the scatterer of the photons is the electronic distribution that

surrounds the nucleus. The crystal lattice, due to its periodic nature, acts essentially as a three

dimensional grating, and the elastic peaks are the resulting interference. Since the number of

scatterers in a crystal is normally quite large, the peaks are very sharp.

This obviously oversimplifies elastic X-ray scattering, but it is essentially correct.

2.1.2 Bragg’s Law

The most important law of X-ray diffraction is Bragg’s Law. It is used to find the angle needed to

find a elastic peak corresponding to a given planar spacing. There are several ways to derive this

law, such as geometrical (the way Bragg formulated it), classical electrodynamical, and quantum
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mechanical. It will be derived below using quantum mechanics.

Scattering occurs since the electrons of the atom couple with the electromagnetic field of

photons. Since the scattering is between high energy photons and a weakly coupling electronic

potential, the Born approximation allows the scattering to be described as a change of state for

the photons, with the asymptotic states represented as plane waves, Ψ(r) ∝ eik·r. These states are

described by their wave vectors k, with Ψk(r) representing the initial state and Ψk′(r) representing

the final state.

The transition rate is described by Fermi’s Golden Rule and is proportional to the square of

the matrix element

Tk′k ≡ 〈Ψk′(r)|U(r)|Ψk(r)〉 =
∫

Ψ∗
k′(r)U(r)Ψk(r)dr (2.1)

where U(r) is the electronic potential to which the photons couple. This potential is periodic since

the atoms are in a crystal structure, U(r) = U(r + R) where R ≡ n1a1 + n2a2 + n3a3 is a lattice

vector of the crystal. Due to the periodic nature of the electronic potential, U(r) can be represented

by a Fourier series as U(r) =
∑

K UKeiK·r, where K ≡ hb1 +kb2 + `b3 is a reciprocal lattice vector

of the crystal. The matrix element then becomes

Tk′k =
∑

K

UK

∫
e−ik′·reiK·reik·rdr =

∑

K

UK

∫
ei(k+K−k′)·rdr . (2.2)

There is a standard definition of Q ≡ k′ − k for the change of the photon’s wave vector (the “crystal

momentum”, since p = h̄k). This leaves

Tk′k =
∑

K

UK

∫
ei(K−Q)·rdr =

∑

K

UKδKQ =





UK if Q = K for one value of K

0 if Q 6= K for all values of K
(2.3)

as the matrix element. From this, the only reflections allowed are those where Q = K, meaning

that the change in the photon’s wave vector needs to equal a reciprocal lattice vector. The peak

in actuality is not a infinitely thin peak, since the Fourier series was formed assuming an infinitely

large crystal; in reality, the finite nature of the crystal produces intensity maxima, with a finite

width and height, where Q = K.
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For elastic scattering, there is no change in the photon energy, so |k| = |k′|. From simple

geometry, this results in K = 2k sin θ. The reciprocal lattice vector K is related to the interplanar

distance of the direct crystal lattice, d, by K = 2πn/d. Also, k = 2π/λ. Combining these results

in

2d sin θ = nλ (Bragg’s Law) (2.4)

where n is the order of the reflection for a given lattice spacing. The energy of the photons, E, is

sometimes known, instead of the wavelength; the relation between the two is

λ =
hc

E
. (2.5)

2.1.3 Scattered Intensity

The atomic form factor is an important concept that is used in X-ray diffraction. It is the amplitude

of the elastic scattering of the photons from a single atom for a given Q, in terms of electron units.

It is a function whose value decreases from the total number of electrons in the atom, as Q increases.

The decrease comes the fact that there is an electron density distribution about the nucleus, and

the photons scattering from one part of the distribution can interfere destructively with photons

scattering from another part of the distribution. The form factor, assuming the electron density

distribution is spherical (a good approximation for helium), can be computed by

f =
∑
n

∫ ∞

0
4πr2ρn(r)

sin(kr)
kr

dr (2.6)

where ρn is the electron density distribution for electron n of the atom.

If the scattered intensity is calculated for the static ideal model of a crystalline lattice, the

result is

I(Q) = Ie P (Q)
∑

l,n

fn(Q)eiQ·Rln
∑

l′,n′
f∗n′(Q)e−iQ·Rl′n′ (2.7)

where

P (Q) =





(1 + cos2(2θ))/2 unpolarized incident beam

1 horizontally polarized incident beam
(2.8)
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and

Ie = I0
e4

me
2c4Robs

2 . (2.9)

The indices l and n together count every atom in the crystal, with l labelling the individual unit

cells and n labelling each atom within the unit cell, and fn is the form factor of atom n. P (Q) is a

polarization factor, with its Q dependence coming from Q ≡ |Q| = (4π/λ) sin(θ). Ie is a constant

where I0 is the intensity of the incident beam, e is the electronic charge, me is the mass of the

electron, c is the speed of light, and Robs is the distance from the crystal to the point of observation.

In order to solve Eq. (2.7), one assumes a crystal where the atoms are at the lattice positions

R ≡ n1a1 + n2a2 + n3a3 and the crystal is finite such that −Ni/2 < ni ≤ Ni/2, making the total

number of atoms N = N1N2N3. Eq. (2.7) then becomes

I(Q) = Ie P (Q) F (Q)2 B(Q) (2.10)

where F (Q) is the structure factor and

B(Q) =
sin2([N1/2]Q · a1)
sin2([1/2]Q · a1)

sin2([N2/2]Q · a2)
sin2([1/2]Q · a2)

sin2([N3/2]Q · a3)
sin2([1/2]Q · a3)

. (2.11)

The function B(Q) (which is nonstandard notation) peaks when the Laue condition Q = K is

satisfied for some reciprocal lattice vector K; this maximum value of B(Q) at the Laue condition is

N1
2N2

2N3
2 (or N2). The peaks have a finite width, although they become sharper as N increases;

in a normal crystal sample, N is quite large, making the Bragg peaks very sharp.

The structure factor is of the form

F (Q) =
∑
n

fn(Q)eiQ·rn = (at Bragg reflections)
∑
n

fn(Q)e2πi(hxn+kyn+`zn) (2.12)

where the sum is over all the atoms within the unit cell, where the atoms are at positions rn ≡
xna1 + yna2 + zna3 where xn, yn, and zn are all between zero and unity. The factor fn is the

form factor of the atom at position rn. The structure factor gives a value for any particular (h k `)

reflection, and only needs to be computed where there is more than one atom per unit cell, since

F (Q) = f(Q) otherwise. The structure factor can cause reflections corresponding to a reciprocal

lattice point to not appear; these peaks are then considered to be “forbidden”.
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2.1.4 Debye-Waller Factor

The above derivation assumes that the electronic distributions are perfectly periodic, which is not

the case.

Crystal nuclei oscillate about their “ideal” positions, due to the quantum fluctuations of the

atoms and the crystal temperature. If these oscillations are small enough that they are harmonic,

this motion of the nuclei can be broken down into normal modes, called phonons. Even at absolute

zero, there is still motion due to the zero-point oscillations of the nuclei; in the harmonic model, the

zero-point energy of each phonon mode is h̄ω/2. The harmonic model will be assumed at this point

and it will be assumed that the electron distribution follows the nuclei’s position instantaneously.

Because of the presence of these oscillations, the instantaneous spacings between nuclei are not

at the ideal value, even though the average value is at the lattice site R. These small instantaneous

deviations of the nuclei positions from the ideal cause the interference to be less than perfect,

reducing the peak’s maximum value.

The instantaneous position of a nucleus can be expressed as

r(t) = R + u(t) , (2.13)

where u(t) is the deviation of the nucleus from its lattice position R. If this time-dependent r is

substituted for R in Eq. (2.7), the result is

I(Q, t) = Ie P (Q)
∑

l,n

fn(Q)eiQ·(Rln+uln)
∑

l′,n′
f∗n′(Q)e−iQ·(Rl′n′+ul′n′ ) . (2.14)

If time averaged in order to obtain an experimentally obtained intensity, the result is

I(Q) = Ie P (Q)
∑

l,n

∑

l′,n′
fn(Q)f∗n′(Q) eiQ·(Rln−Rl′n′ ) 〈eiQ·(uln−ul′n′ )〉 . (2.15)

Let Q · uln = QuQln, where uQln is the component of uln along Q, thus the component of displace-

ment normal to the diffracting planes. If (uQln−uQl′n′) is small and has equal probability of being

positive or negative, or if it has a Gaussian distribution (making the following an exact expression),

〈eiQ(uQln−uQl′n′ )〉 = e−
1
2
Q2〈(uQln−uQl′n′ )

2〉 . (2.16)
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In the case of helium, the displacements are not small, so the distribution needs to be Gaussian in

order to use this expression. Using inelastic neutron scattering at high momentum transfers, the

momentum distribution, n(p), has been measured and found to be Gaussian even at low densities,

within small experimental uncertainties [2].

If the displacements deviate from a Gaussian distribution, the simplification is more complex,

being

〈eiQ(uQln−uQl′n′ )〉 = exp
(
−1

2
Q2〈(uQln − uQl′n′)2〉

)
× (2.17)

exp
(

1
24

Q4
[
〈(uQln − uQl′n′)4〉 − 3〈(uQln − uQl′n′)2〉2

])
×O(Q6) .

Analysis of X-ray intensity data can reveal an estimation of an anharmonic effect through the

non-Gaussian terms.

If the exponent in Eq. (2.16) is expanded and a Gaussian displacement is assumed,

〈eiQ(uQln−u
Ql′n′ )〉 = e−

1
2
Q2〈uQln

2〉e−
1
2
Q2〈u

Ql′n′
2〉

eQ2〈uQlnuQl′n′ 〉. (2.18)

The abbreviation

Mln ≡ 1
2
Q2〈uQln

2〉 (2.19)

is used along with

eQ2〈uQlnuQl′n′ 〉 = 1 +
(
eQ2〈uQlnuQl′n′ 〉 − 1

)
(2.20)

in Eq. (2.15), resulting in

I(Q) = Ie P (Q)
∑

l,n

∑

l′,n′
fn(Q) e−Mln f∗n′(Q) e−Ml′n′ eiQ·(Rln−Rl′n′ ) + (2.21)

Ie P (Q)
∑

l,n

∑

l′,n′
fn(Q) e−Mln f∗n′(Q) e−Ml′n′ eiQ·(Rln−Rl′n′ )

(
eQ2〈uQlnuQl′n′ 〉 − 1

)
.

Considering the second term, 〈uQlnuQl′n′〉 approaches zero the further apart the atomic sites

Rln and Rl′n′ are from each other; consequently, this term results in scattering that does not form

sharp peaks, since the large |Rln − Rl′n′ | values are what create the sharpness of peaks. This

second term represents a diffuse contribution, called temperature diffuse scattering; this is actually
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a misnomer in the case of low temperature helium crystals, since most of the motion is due to the

zero-point energy of the crystal, not the phonons.

The first term is the same as Eq. (2.7), giving sharp peaks as before, but reduced by factors

e−Mlne−Ml′n′ , both of which make up the Debye-Waller factor. It can again be represented by

I(Q,M) = Ie P (Q)FT (Q,M)2 B(Q) (2.22)

with the structure factor now including the Debye-Waller factor:

FT (Q, M) =
∑
n

fn(Q) e−MneiQ·rn (2.23)

= (at Bragg reflections)
∑
n

fn(Q) e−Mne2πi(hxn+kyn+`zn) .

When the crystal is composed of only one type of atom, all the Mn are the same, the expression

for the structure factor can be simplified to FT (Q,M)2 = e−2MF (Q)2, where F (Q) is the structure

factor for the static case. Changing M back to its definition, this first order intensity can be

represented by

I(Q,M) = Ie P (Q) F (Q)2 e−2M B(Q) = Ie P (Q)F (Q)2 e−Q2〈uQ
2〉B(Q) (2.24)

Just as before, 〈uQ
2〉 refers to the atomic motion that is perpendicular to the reflecting plane

specified by Q.

2.1.5 Integrated Intensity

When the intensity of a peak is desired, it is normally the integrated intensity that is measured,

not the maximum intensity value of the peak.

In practice, the measurement of the maximum intensity value of a peak is difficult, since only

photons reflecting at the exact Bragg angle would then be measured. This implies that the detector

has an infinitely small solid angle, which would not work since there would be no counts, and the

crystal is at the exact Bragg angle, which is impossible to attain. If the solid angle is increased to

increase the count rate, photons corresponding to slightly off of the peak’s maximum are then also

measured, compromising the measurement. If the Bragg angle of the crystal is even slightly off,
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the maximum value of the peak decreases. Both of these problems disappear when the intensity of

the entire peak is integrated.

Even if one could measure the maximum value, there would be problems if the crystal was

slightly mosaic. With the sub-crystals only slightly misaligned, there are multiple peaks in the θ

rotation of the crystal. It would be impossible to pick a true maximum value, and with integrated

intensity measurements, this is not a problem.

An integrated intensity scan over a peak is done by centering the peak into the detector. Slits in

front of the detector are opened wide, allowing the detector to catch all the scattered intensity. The

crystal is then rotated in the θ direction until the peak is gone. Then the crystal is rotated through

the entire peak, while recording the detector measurements. The integration occurs simultaneously

due to the detector, where the entire peak is measured at any given time, and the rotation, where

the crystal is rotated through the Bragg angle. This assumes no background, no incoming flux

variations, and no detector count rate corrections.

When the resulting scan is integrated, the intensity proportionality that is found is

Iint ∝ I0 L(Q) F (Q)2 e−Q2〈uQ
2〉 , (2.25)

where

L(Q) =
P (Q)
sin(2θ)

. (2.26)

The factor L(Q) is the Lorentz polarization factor, which absorbs the polarization factor P (Q).

2.1.6 Further Effects

For single perfect crystal X-ray diffraction, there are two additional effects that are normally taken

into account, absorption and extinction. They are not taken into account for helium crystals of the

size used in this thesis.

Absorption is the attenuation of the X-ray beam by the crystal itself. For helium crystals with

the molar volumes seen in this thesis, the distance in the crystal for the intensity to be attenuated

by half is around 10 cm (see Appendix A); the diameter of the crystal is less than one mm. Because

of this, absorption can be neglected.

Extinction is another effect that sometimes needs to be taken into account. It is additional
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interference effects caused by the multiple scattering of reflections within a crystal, and requires

thick, perfect crystals. The main observable effect is a flattening of Bragg peaks. The flattening

effect is not seen in the peaks, which is understandable since the helium crystals were not thick

(when considering the very small scattering cross-section of helium) or perfect crystals; Polaroids

of Bragg spots revealed multiple crystals. Because of this, extinction effects are neglected.

2.2 Analysis of the Debye-Waller Factor

In order to represent the measured mean square deviation as an equivalent Debye temperature,

ΘM , a more detailed analysis of the lattice dynamics is needed [3, 4].

2.2.1 Formulation of Debye-Waller Factor

As shown before, the equation

r(t) = R + u(t) (2.27)

shows how to represent the instantaneous position of a nucleus, r, with a reciprocal lattice point,

R, and a time dependent deviation, u. Again, assuming a harmonic model, phonons will be present

in the crystal. However, u for one nucleus can be represented as a superposition of all the phonon

modes present in the crystal, such as by

u(t) =
∑

g,j

agj êgj cos(ωgjt− g ·R− δgj) (2.28)

where g is a phonon wave vector with vibration directions êj , a is the amplitude of the wave, ω is

the phonon angular frequency, t is time, δ is an arbitrary phase factor, and the summation is over

all phonon wave vectors g and vibration directions j. Using Eq. 2.28, the Debye-Waller factor, 2M ,

can be shown to be

2M = Q2〈uQ
2〉 =

1
2

∑

g,j

(Q · êgj)2〈agj
2〉 . (2.29)

The next step is to express the mean square amplitude of a wave in terms of its thermal energy.
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The kinetic energy of the crystal is

Ekinetic =
1
2

∑

n,l

m u̇2
nl (2.30)

where

u̇n = −
∑

g,j

agjωgj sin(ωgjt− g ·R− δgj) . (2.31)

From these equations, the mean kinetic energy is given by

〈Ekinetic〉 =
1
2
Nm 〈u̇2〉 =

1
4
Nm

∑

g,j

〈agj
2〉ωgj

2 . (2.32)

The mean total energy is twice the mean kinetic energy, and 〈εgj〉 is the average energy of mode gj,

giving

〈Etotal〉 =
1
2
Nm

∑

g,j

ωgj
2〈agj

2〉 =
∑

g,j

〈εgj〉 , (2.33)

giving

〈εgj〉 =
1
2
Nmωgj

2〈agj
2〉 . (2.34)

The energy of a phonon mode is

εgj = h̄ωgj(n + 1/2) , (2.35)

where n is the number of phonons in a given mode; since only the average energy is needed, the

number of phonons can be represented by the Bose-Einstein distribution, resulting in

〈εgj〉 = h̄ωgj

[
〈n(ωgj , T )〉+

1
2

]
= h̄ωgj

[
1

exp(h̄ωgj/kBT )− 1
+

1
2

]
. (2.36)

Putting all of this together gives the general form of the Debye-Waller factor for the harmonic

model,

2M =
1
2

∑

g,j

(Q · êgj)2〈agj
2〉 =

∑

g,j

(Q · êgj)2
〈εgj〉

Nmωgj
2

=
h̄

Nm

∑

g,j

(Q · êgj)2

ωgj

[
1

exp(h̄ωgj/kBT )− 1
+

1
2

]
. (2.37)
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2.2.2 Debye Approximation

In order to represent the Debye-Waller factor (Eq. 2.37) by a single parameter, simplifications need

to be made. One set of simplifications was introduced by Debye.

The atomic displacement is assumed to be isotropic (the magnitude of the displacement is the

same regardless of direction), which is normally the case for a structure with a cubic symmetry.

All phonon modes are assumed to be acoustic, with optic modes being accomodated by expanding

the volume of the Brillouin zone. All wave oscillation directions are assumed to be either purely

longitudinal or purely transverse. The phonon dispersion relation for each of the three oscillation

directions is assumed to be linear in nature, such as

ωj = cjk , (2.38)

which implies a velocity that is independent of the wavelength of the phonon.

The Brillouin zone is replaced by a sphere of radius kD, which has a volume equal to that of

the Brillouin zone:

VBZ =
4
3

π kD
3 . (2.39)

The density of phonon points is N/VBZ, and the summation over k can be replaced by an integral

over the sphere. Since the values of ωj are independent of angle, the element of volume is a

spherical shell of thickness 4πk2 dk. For each oscillation direction, the direction êkj takes an equal

probability over the entire shell; integrating this angularly over the shell and dividing by the area

gives an average value of
〈
(Q · êkj)2

〉
= Q2/3 . (2.40)

Equation 2.37 becomes

2M =
h̄Q2

3Nm

∑

j

∫ kD

0

1
ωkj

[
1

exp(h̄ωkj/kBT )− 1
+

1
2

]
N

VBZ

4πk2 dk . (2.41)

There has to be a change of variable from k to ωj in the integral before it can be solved; using

Eq. 2.38,

k2 dk =
ωj

2

cj
3

dωj . (2.42)
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The VBZ also needs to be changed, resulting in

VBZ =
4
3
π

(
ωDj

cj

)3

, (2.43)

where ωDj is the Debye frequency, the maximum frequency for a given oscillation direction j.

Putting these equations into Eq. 2.41 gives

2M =
h̄Q2

m

∑

j

1
ωDj

3

∫ ωDj

0

[
1

exp(h̄ω/kBT )− 1
+

1
2

]
ω dω . (2.44)

Let

ε ≡ h̄ω

kBT
and xj ≡

h̄ωDj

kBT
. (2.45)

The Debye integral is introduced as

Φ(x) ≡ 1
x

∫ x

0

ε dε

eε − 1
. (2.46)

The use of these definitions, and a partial integration, results in

2M =
h̄2Q2

mkBT

∑

j

1
xj

2

[
Φ(xj) +

xj

4

]
. (2.47)

The Debye temperature is defined as

ΘD ≡ h̄ωD

kB

, (2.48)

and in this thesis, ΘD is a general Debye temperature, while Θx is a Debye temperature of type

x (with the D subscript implicit). In order to see how Eq. 2.47 depends on Θj , xj needs to be

redefined as

xj ≡ Θj

T
; (2.49)

for each type of oscillation direction, longitudinal or transverse, there is a characteristic Debye

temperature. Expanding the series in Eq. 2.47 gives

2M =
h̄2Q2

mkBT

{
1

xl
2

[
Φ(xl) +

xl

4

]
+

2
xt

2

[
Φ(xt) +

xt

4

]}
. (2.50)
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In order to combine the terms in brackets, some approximations need to be made. Expanding the

exponential in Eq. 2.46 gives

[
Φ(x) +

x

4

]
= 1 +

x2

36
− x4

3600
+ · · · . (2.51)

If x < 2, meaning T > ΘD, [Φ(x) + x/4] is very similar for both transverse and longitudinal waves.

An average ΘM is introduced according to

3
ΘM

2 ≡
1

Θl
2 +

2
Θt

2 . (2.52)

With the average temperature ΘM and the expansion, the Debye-Waller factor becomes

2M =
3h̄2Q2

mkBTx2

[
Φ(x) +

x

4

]
=

3h̄2Q2

mkB

(
T

ΘM
2

) [
Φ(x) +

x

4

]
. (2.53)

2.2.3 Structure Considerations

The Debye-Waller factor in its general form,

2M = Q2〈uQ
2〉 , (2.54)

has a directional dependence which comes from the fact that 〈uQ
2〉 is the mean squared atomic

displacement in the Q direction. The form of this dependence for fcc and hcp needs to be discussed.

The equation for the oscillation can be broken into

uQ = ux cos(Q,x) + uy cos(Q,y) + uz cos(Q, z) , (2.55)

where cos(Q, i) is cosine of the angle between Q and the i-axis. If the approximation that 〈ux
2〉,

〈uy
2〉, and 〈uz

2〉 are independent is used when forming the square and taking the average, the result

is

〈uQ
2〉 = 〈ux

2〉 cos2(Q,x) + 〈uy
2〉 cos2(Q,y) + 〈uz

2〉 cos2(Q, z) . (2.56)

The fcc structure can be based on the cubic basis. For cubic crystals, all three directions are

equal since there is no differentiation between the a, b, and c axes, expressed by 〈ux
2〉 = 〈uy

2〉 =
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〈uz
2〉. Since cos2(Q,x) + cos2(Q,y) + cos2(Q, z) = 1, it follows that 〈uQ

2〉 is independent of the

direction of uQ. So, for the cubic case, 〈uQ
2〉 is isotropic, which was one of the conditions for the

Debye approximation. For the cubic case, because of this isotropy, 〈uQ
2〉 is normally referred to as

just 〈u2〉.
The hcp structure is based on the hexagonal basis. Let the projection of Q on the x-y plane

have the direction r. Equation 2.56 then becomes

〈uQ
2〉 =

(
〈ux

2〉 cos2(r,x) + 〈uy
2〉 cos2(r,y)

)
cos2(Q, r) + 〈uz

2〉 cos2(Q, z) . (2.57)

For hexagonal crystals, the x and y directions are equal since there is no differentiation between

the a and b axes, and this is expressed by 〈ur
2〉 = 〈ux

2〉 cos2(r,x) + 〈uy
2〉 cos2(r,y). Using this

relation results in

〈uQ
2〉 = 〈ur

2〉 sin2(Q, z) + 〈uz
2〉 cos2(Q, z) , (2.58)

where 〈uz
2〉 and 〈ur

2〉 are the components parallel and perpendicular to the z-axis. In general, for

an hcp crystal, 〈uz
2〉 and 〈ur

2〉 are different (see Appendix E).

2.3 Thermodynamic Properties

Several measurable properties of crystals, such as M , M ′, and CV , can be expressed using a density

of states, g(ω). The density of states replaces a summation over all phonon modes. Using these

expressions, it is possible to relate these different types of measurements.

The relations given are for the Debye-Waller factor [5],

M =
Q2

6Nm

∫ ωmax

0

〈ε〉 g(ω)
ω2

dω , (2.59)

the temperature derivative of the Debye-Waller factor [6],

M ′ =
dM

dT
=

Q2

6Nm

∫ ωmax

0

d

dT

(〈ε〉 g(ω)
ω2

)
dω , (2.60)

and the heat capacity [7],

CV =
∫ ωmax

0

(
∂〈ε〉
∂T

)

V
g(ω)dω . (2.61)
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The density of states used is normalized to the total number of phonon modes in the crystal,

∫ ωmax

0
g(ω)dω = 3N , (2.62)

where ωmax is the maximum frequency of the density of states. The average energy of each phonon

mode is given by

〈ε(ω, T )〉 = h̄ω

[
1

exp(h̄ω/kBT )− 1
+

1
2

]
=

h̄ω

2
coth

(
h̄ω

2kBT

)
. (2.63)

Measurements of these three types can be expressed in terms of a temperature dependent

Debye temperature. This is accomplished by using the Debye model as described in Section 2.2.2.

In this model, the density of states is

g(ω) =

(
9N

ωD
3

)
ω2 (2.64)

and ωD = ωmax. In order to get the Debye temperature, the measured value is set equal to the

Debye model relation. Then the relation is solved for ωD, with the Debye temperature being

ΘD(T ) =
h̄ωD(T )

kB

. (2.65)

The temperature dependence comes from the fact that the Debye temperature assumes an unreal-

istic Debye model and the anharmonic effects of a physical crystal are also unaccounted for. There

are three Debye temperatures corresponding to the three relations, ΘM , ΘM ′ , and ΘCV
; they will

not have the same values in general for each temperature, since these relations weight different

regions of the density of states.

A similar type of quantity to the thermodynamic relations are the moments of the frequency

distribution [8],

µ(n) =
1

3N

∫ ∞

0
ωng(ω) dω , (2.66)

where there is a weighting of ω to the order n. In this form they are unwieldy, since they can vary

over several orders of magnitude, so what is generally done is equate the right side of Eq. 2.66 where

g(ω) is the (unknown) density of states of the material to a copy where g(ω) is that of the Debye
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model (Eq. 2.64). This equation is solved for the nth-order Debye frequency, ωD(n), resulting in

ωD(n) =
[(

n + 3
3

)
µ(n)

] 1
n

(n > −3, n 6= 0) . (2.67)

The n = −3 and n = 0 cases can be found in an asymptotic limit to each, and normally the

maximum n considered is n = 6.

The Equations 2.59 to 2.61 can be expanded in terms of the Debye moments of the distribution

for both the high temperature and low temperature limits. From this, a limiting value of the Debye

Temperature can be found as a Debye moment. This has been done for ΘM [5], ΘM ′ [9], and

ΘCV
[10], with the results being

ΘM (T → 0) = (h̄/kB) ωD(−1) ΘM (T →∞) = (h̄/kB)ωD(−2) (2.68)

ΘM ′(T → 0) = (h̄/kB) ωD(−3) ΘM ′(T →∞) = (h̄/kB) ωD(−2) (2.69)

ΘCV
(T → 0) = (h̄/kB) ωD(−3) ΘCV

(T →∞) = (h̄/kB) ωD(+2) . (2.70)

No two Debye temperatures have agreeing values in both limits.

If data for one type of measurement over a broad range of temperature can be taken, the

moments of the distribution can be extracted. This has been shown for the CV case [10, 5], with

moments from n = −3 to n = 6 being found, with the lower moments being more accurate than the

higher. For the case of helium, it is not possible to collect enough M or M ′ data to calculate the

moments due to how difficult the data is to take, leaving only the possibility of using CV (which has

been measured for helium quite well). The only caveat of this method of calculating the moments

is that it assumes only one-phonon processes, which is not true for helium.

2.4 Anharmonicity

The harmonic approximation does not hold perfectly for any actual crystal. This is easily seen by

considering a few of the expected properties of a purely harmonic crystal: no thermal expansion

and infinite thermal conductivity [11]. In any real crystal, neither of these cases hold.
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2.4.1 Thermal Expansion

Thermal expansion is caused by the fact that the interaction potential is asymmetric. As the

temperature is changed, the energy and the range of motion of the nuclei increase. This increase in

motion and the asymmetry causes a shift in the mean position of the nuclei relative to one another,

resulting in thermal expansion. The anharmonicity behind thermal expansion can be included by

the use of a dimensionless parameter, the Grüneisen parameter. With this tool, the anharmonicity

can be represented as the replacement [12]

ω2 −→ ωQ
2 ≡ ω2

(1 + 2 γ κ T )
, (2.71)

where γ is the Grüneisen parameter and κ is the volume coefficient of expansion. This replacement

is the basis of quasi-harmonic theory; this model assumes that the phonon frequencies depend on

the volume, but a harmonic potential is still assumed.

The Grüneisen parameter, in its most general form, relates each phonon mode to the volume,

γgj = −∂ lnωgj

∂ lnV
. (2.72)

There are other types of Grüneisen parameters. There is one corresponding to the moments of the

distribution,

γ(n) = −
(

1
n

)
∂ lnµ(n)
∂ lnV

= −∂ ln ωD(n)
∂ lnV

. (2.73)

The Grüneisen parameter corresponding to the Debye frequency is defined as

γD(T ) = −∂ ln ωD(T )
∂ lnV

= −∂ ln ΘD(T )
∂ ln V

. (2.74)

It is temperature dependent, and if the limiting cases of the Debye temperatures are considered,

Eqs. 2.68 to 2.70, the Grüneisen parameters in the high and low limits become

γM (T → 0) = γ(−1) γM (T →∞) = γ(−2) (2.75)

γM ′(T → 0) = γ(−3) γM ′(T →∞) = γ(−2) (2.76)

γCV
(T → 0) = γ(−3) γCV

(T →∞) = γ(+2) . (2.77)
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The Grüneisen parameter corresponding to the Debye frequency can be useful to relate Debye

temperatures at different volumes [5] (assuming that the Grüneisen parameter is constant), using

ΘD(V0)
ΘD(V )

=
(

V

V0

)γD

. (2.78)

2.4.2 Thermal Conductivity

Heat conduction is the process of transference of vibrational energy from one part of a material

to another. In the case of harmonic crystals, this vibrational energy is transferred in the form of

phonons. The discussion in this section assumes a pure crystal with no defects, and is infinitely big

so that surface effects can be ignored.

Phonon states in harmonic solids are stationary states, so once a phonon distribution is cre-

ated such that it carries a thermal current, it stays that way forever; the thermal conductivity is

infinite. If anharmonic effects are taken into account, phonon modes interact with one another.

This takes the form of phonons transferring between modes, where the total number of phonons is

not conserved; this can be thought of as the creation and annihilation of phonons.

If the anharmonic effects are small, their effects may be understood in simple terms using

perturbation theory. These effects are governed by conservation of both crystal momentum and

energy (momentum conservation has a caveat, described later). The cubic effect involves the change

of the phonon numbers of three different modes, for a net phonon gain of 1 or −1; one phonon splits

into two new phonons or two phonons combine to form one phonon. The quartic effect involves

the change of the phonon numbers of four different modes, for a net phonon gain of 2, 0, or −2;

one phonon splits into three, two phonons change into two different phonons, or three phonons

combine into one. The sizes of the cubic and quartic terms are similar, since the cubic term is a

second order perturbation while the quartic term is a first order perturbation; this means that any

attempt to allow for the cubic correction should also include the quartic term, especially since they

are normally of opposite sign.

These anharmonic effects as discussed do not explain the finite nature of the thermal conduc-

tivity, since none of these phonon interactions change the total crystal momentum of the phonons

in the crystal. The finite nature comes from umklapp processes, which are a special type of an-

harmonic process. Taking the cubic case as an example where two phonons merge into one, the
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umklapp process would happen if the wave vector of the phonon sum would lie outside the first

Brillouin zone of the crystal; in this case, a reciprocal lattice vector K would be subtracted from this

sum such that the resultant phonon wave vector would lie inside the first Brillouin zone. A similar

process is involved with the quartic cases. This subtraction of some value K obviously causes the

total crystal momentum of the phonons involved in a umklapp process to not be conserved.

Anharmonic processes can be thought of as “collisions” between phonons (where the total

number of phonons is not constant). A relaxation time τ can be used to describe the mean time

between anharmonic processes, making the phonons act similar to a gas. When a temperature

gradient is placed across the crystal, the more energetic phonons from the warmer side will move

toward the colder side. As they do this, collisions will occur, and for each one that results in an

umklapp process, the net phonon momentum towards the cold side diminishes, “impeding” the flow

of heat. Thus, a crystal with anharmonic processes has a finite thermal conductivity.
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Chapter 3

Experimental Apparatus and

Equipment

The experimental apparatus has several sections. One is the cryogenic system, consisting of the

Displex head, compressor, and heaters. Another is the high pressure gas handling system, which

consists of the helium supply bottle, the compressor, the valves, and all the connecting tubing. The

sample cell is a very important part, being both part of the gas handling system and the cryogenic

system. Also, there are electronics associated with the experiment. The last component is the

X-ray source, which is in this case either the National Synchrotron Light Source at Brookhaven

National Laboratory or the Advanced Photon Source at Argonne National Laboratory.

The setup of this experiment is very similar to the one used by C. T. Venkataraman in her

thesis work [1]. Much of the equipment used is the same as she used [2]. The setup used by her

(and subsequently the one I used) was influenced by the thesis work of A. T. Macrander [3].

3.1 Gas Handling System

The gas handling system is complex and composed of many pieces. Fig. 3.1 is a schematic of it.

Several concerns needed to be taken into consideration when the gas handling system was

designed. The high 99.9999% purity of the sample gas needs to be maintained. There is also a

desire to minimize the volume of the system that is not part of the sample cell. The stored energy

of the system is proportional to the volume, so this is a safety concern. When using 3He, the

smaller volume minimizes the amount of this expensive gas that is needed. The maximum working

pressure also has to be determined, so that the correct type of tubing and valves can be used.

In order to maintain the high purity of the sample gas, metal-to-metal seals are needed through-

out the system, with the inside of the system being thoroughly clean. Metal-to-metal seals are also
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Figure 3.1: Schematic of the pressure system.
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ideal for high pressure systems such as this.

To find out maximum working pressure, the needs of the desired research have to be addressed.

The system needs to be able to go above the fcc-hcp-liquid triple point for helium, which is at

111.6 MPa for 4He and 158 MPa for 3He. Consequently, a good maximum working pressure is

300 MPa.

For this pressure, we used tubing, fittings, and valves rated up to 60,000 PSI (∼415 MPa) [4].

The standard tubing for this pressure has an outer diameter of 1/8 ” (3.175 mm) and an inner

diameter of 0.020 ” (0.508 mm), and is drawn from 316 stainless steel. The valves are also made

out of 316 stainless steel, and the stems are protected from leaking by Teflon. There are also two

other smaller sizes of tubing in the system [5], and in order to use them, one has to vacuum braze

them to a drilled plug.

To protect the system from going above the rated pressure for the system, there are two rupture

disks attached at different points of the system. One is attached directly to the pressure generating

cell (PGC), and the other is attached to the main line of the system.

In order for us to know what the pressure is in the system, there are two devices on the system.

One is a large dial pressure gauge that is rated to 50,000 PSI (∼345 MPa) and is very precise with

a resolution of 50 PSI [6]. This is a Bourdon tube style gauge, and has a smaller internal volume

than similar gauges.

The other pressure device is the strain gauge cell (SGC). The SGC is a specially made part

that is made of Vascomax 300 CVM maraging steel. It is cylindrical and is hollow. To minimize

the volume of this device, an insert fills the hollow; however, it still allows the free movement of the

outside walls. When it is under pressure, the circumference of the outer walls swells linearly with

the pressure. On the outside of these outer walls are mounted two pair of strain gauges [7]. Each

pair is made by the manufacturer to have the gauges perpendicular to each other. Each is mounted

such that one gauge lies along the axis of the SGC, while the other lies along the circumference;

this allows for compensation of temperature effects. The gauge that lies along the circumference

measures the pressure effect and the temperature effect, while the axial gauge measures mostly

the temperature effect. Each pair makes one half of a strain gauge bridge, and the two pairs are

oriented antisymmetrically in the bridge. The voltage in the middle of the strain gauge bridge is

measured by a high precision digital strain gauge meter. The measured voltage is calibrated with
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Figure 3.2: Diagram of the strain gauge cell. The right diagram shows the positions of the strain
gauge pairs on the SGC. The strain gauge marked ‘A’ is the active one that measures both the
expansion due to the gas pressure and the thermal expansion, while the strain gauge marked
‘P’ is the passive one that measures only the thermal expansion. The left diagram labels the
metal components. a) Stainless steel fill line that leads to the pressure system. b) Sealing region.
c) Maraging steel nut. d) Maraging steel insert that reduces the dead volume.

the Heise gauge at a wide range of pressures to get a linear slope and offset (see Appendix G.2.1.

The strain gauges in practice do drift a bit, making the corresponding values not highly accurate,

but their function is more for detecting small, rapid pressure changes. Figure 3.2 is a diagram of

the SGC.

In order to get to the desired pressure, a compressor needs to be used. It has to be a special one

that allows no foreign contamination (e.g. oil, air) to get into the gas it is pumping. The compressor

used has two stages that are driven by compressed air [8]. The compression is accomplished by

the action of the air upon a metal diaphragm, which in turn acts upon the helium. Each stage

of the pump has an intake and outlet check valve to keep the gas from flowing backwards. This

pump, however, can only pump a gas up to a maximum of 30,000 PSI (∼205 Mpa). To go any
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higher, another device has to be used, the PGC (described below). To protect the compressor (and

system) from dirt in the helium bottle, there is a filter before the intake of the compressor. Tubing,

fittings, and valves rated only to 15,000 PSI (∼103 MPa) [4] are used between the supply bottle(s)

and the pump because of the lower pressure in that section.

To get to pressures above 30,000 PSI, the pressure generating cell (PGC) is used. This is a

specially made part that is made of Vascomax 300 CVM maraging steel. It is cylindrical and has

a large hollow volume inside of it. To use it, it is cooled down to liquid nitrogen temperatures,

and then filled with helium at 30,000 PSI from the compressor. Once this is done, the compressor

is valved off from the rest of the system, and is then warmed towards room temperature. This

warming then raises the pressure. The PGC is also wrapped with a heater wire that can speed up

the warming process if used, and can even cause the temperature go above room temperature in

order to get more pressure. Once the desired pressure is attained, the PGC is valved off from the

rest of the system, and is then vented. This can be done multiple times for diminishing returns.

Between the compressor and the sample cell is a cold trap, which gets filled with liquid nitrogen.

The timing of the filling of the cold trap is important: it is done after the non-helium gases are

pumped out and flushed, but before the system is pumped up to its final pressure, so as to capture

any impurities that would otherwise go into the sample cell.

One critical piece of the gas handling system is not normally connected to the system, which

is the leak detector [9]. It is crucial for finding the leaks that may occur in the system, and is

extremely sensitive to such leaks. It is a small, self-contained unit, with roughing and turbo pumps

built into it. If need be, it can be used as a turbo pump to pump out a section of line, but this is

avoided.

The preparation of the gas handling system includes pumping out the system, purging the

system with 4He, checking for leaks, and finally pumping up the system with the desired sample

gas. This is all described in detail in Appendix G.2.2.

3.2 Sample Cell

The sample cell has to be able to make it to the desired pressure of 300 MPa without bursting.

It needs to be made of a low Z material so that it will absorb as little of the X-rays as possible.

It would also be beneficial if the material was in a highly multicrystalline form, so as to create
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smooth and uniform Debye-Scherrer rings. This removes the problem of having to worry about the

orientation of the crystals in the cell, vastly simplifying the considerations of the background from

the cell.

A good material to use is beryllium. It has a Z number of 4, and can be powdered and hot-

press sintered into a strong solid. There is a grade of material of this type, I-250 [10], which is

composed of 97% Be and 2.5% BeO, and has an ultimate tensile strength (σu) of 517 MPa and a

yield strength (σy) of 448 MPa. This material also has grain sizes of less than 15 µm, which gives

the Debye-Scherrer rings a uniform appearance.

The cell is cylindrical in shape because of the need for strength in the cell’s walls. This also

allows the high degree of symmetry for the crystal. This symmetry helps in the growing of a single

crystal, since the cooling of the helium is uniform. This also helps keep the exposure of X-rays even

over the crystal as it is rotated about the axis. This is important since there is almost no control

in the orientation of a crystal as it grows.

When designing the cell, the desired bursting pressure (PB) relates to the cell wall diameters

via the following formulae [11]:

PB = σu

(
1 +

σy

σu

) (
K − 1
K + 1

)
, K ≡

(
outer diameter
inner diameter

)
. (3.1)

The cell design used is from a previous experiment and was designed by R. K. Crawford. The

cell design has an inside diameter of 0.032 ” (0.813 mm) and an outside diameter of 0.082 ” (2.08

mm), which results in a bursting pressure of 423 MPa. Since the working maximum pressure is

300 MPa, this is 71% of the bursting pressure, leaving a comfortable safety margin.

When machined [12], the cell’s outer diameter was kept within a narrow margin of error, so as

to not stress any part of the wall more than any other, when under pressure. Similarly, when the

central hole was drilled and reamed, this interior wall was given a lapped finish, since any scratch

could cause the cell to fracture. The bottom of the hole was also made to be smoothly rounded.

The cell is mounted in an assembly, which is shown in Fig. 3.3. To seal the pressure cell,

there are metal-to-metal seals connecting the beryllium cell to the pressure system. The cell slides

through a casing made of maraging steel, with the cell’s head resting at the bottom. On top of this,

a stainless steel insert is placed. After this comes a mushroom fitting that is made of maraging

steel that is vacuum brazed to the end of a fill line. Lastly, a threaded maraging steel nut that the
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Figure 3.3: Diagram of the sample cell assembly. a) Polycrystalline beryllium sample cell (ID 0.8
mm, OD 2 mm) with a 10 mm region that is accessible to the incident beam. b) Maraging steel
casing. c) Stainless steel sealing insert. d) Safety vent. e) Maraging steel mushroom fitting, which
is vacuum brazed to the fill line. f) Maraging steel nut. g) Stainless steel fill line that leads to the
pressure system.

fill line goes through is screwed into the threads inside of the casing; the turning of this applies the

pressure for the seals at the stainless steel insert. In this assembly, all the pieces made out of the

maraging steel were heat treated after machining to strengthen them.

3.3 Cryogenic System

The refrigerator for the experiment had to be chosen, conforming to the needs of the desired

samples. In order to have access to the hcp phase with no intermediate fcc phase during the growth

process, the cell has to get to a temperature lower than the fcc-hcp-liquid triple point, which is at
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Figure 3.4: Diagram of the Displex head, with the sample cell mounted. a) Copper cold finger
extension. b) Lexan vacuum shield. c) Beryllium intermediate temperature radiation shield. d) Low
temperature radiation shield (Copper frame with aluminized Mylar windows). e) Sealing region
of the sample cell assembly. f) Silicon diode sensor B. g) Beryllium sample cell. h) Silicon diode
sensor A. i) Control silicon diode sensor. j) Fill line with heater wire.

14.9 K for 4He and 17.8 K for 3He.

This experiment uses a closed-cycle refrigerator that is specially adapted to fit in a Huber

goniometer [13], and has Displex as its brand name. The Displex model used has the ability to

reach around 10 K, which made it a reasonably good choice for this experiment. More recent

Displex models can go as low as 6.5 K. Figure 3.4 is a diagram of the Displex head with the sample

cell mounted.

In practice, the actual Displex used in this experiment performed quite well at reaching 10 K

and staying there, assuming that there was a good vacuum inside the Displex head and also that

the helium in the closed cycle of the refrigerator had no contaminants. If the vacuum is bad, such
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as from a small leak, air will freeze onto the cold finger, sample cell, etc., creating a larger load

that the Displex must cool. If the helium inside the refrigerator has contaminants, they will freeze

inside the Displex at the piston mechanism, which causes the Displex to make an audible noise as

the piston strikes the ice, and the minimum achievable temperature rises with time.

Inside the Displex head, there is a cold finger that extends towards the center of rotation of

the goniometer. The cold finger ends with a screw thread, allowing the mounting of a sample.

Around the circumference of the cold finger is a heater wire wrapped many times. Also, there is a

silicon diode thermometer mounted at the end of the cold finger, which is the control thermometer.

During normal operation, the heater and thermometer work together with a temperature controller

to maintain the desired temperature.

Onto the cold finger is screwed a mounting piece of cylindrical OFHC (oxygen free, high

conductivity) copper that has a C-shaped clamp at the other end, which accepts the sample cell.

Mounted on this piece is a silicon diode thermometer, sensor A [14]. This thermometer measures

the clamp’s temperature as it touches the end of the cell.

In order to shield the sample cell from the infrared heat radiation from the outside, there are

two intermediate heat shields. The innermost one is composed of copper with an aluminized Mylar

window that extends for about 320 degrees around the cell. The 40 degree strut is needed for

support of the end of the window mount, and is positioned so that the fill line runs along this strut,

minimizing obstruction of the X-ray beam. The outer shield is a solid piece of beryllium that is

machined into the shape of a hollow can that screws into the threads on the Displex, which were

designed for this purpose.

To hold the vacuum required in the Displex, and also allow the passage of X-rays into the cell,

there is a outermost can made of Lexan [15]. This encloses the radiation shields and the sample

cell. The choice of Lexan for the material is important. The sample cell is made of beryllium, the

dust of which is poisonous. The possibility of the cell shattering and creating dust causes a safety

concern. Therefore, a strong enclosure is needed; making this enclosure from Lexan makes sense

since it is the material bullet-proof glass is made out of. In order to reduce absorption of X-rays,

the thickness of the can needs to be minimized since Lexan is a polycarbonate and will absorb

X-rays more strongly than beryllium. The walls of the can were machined quite thin and still held

a great deal of strength. A cell did explode during research by C. T. Venkatarman, and the Lexan
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can did a good job of containing everything. The Lexan does yellow upon prolonged exposure to

X-rays, but this does not degrade its performance in any noticeable way.

Mounted onto the clamp, which is at the end of the cold finger, is the sample cell and the

assembly which connects it to the fill line. Mounted on the assembly closest to the cell is a copper

ring that holds another Si diode thermometer, sensor B [14]. This thermometer measures the

temperature of the cell and, correspondingly, the crystal.

The fill line leaves the sample cell assembly at the end farthest from the cold finger. The fill

line makes a loop next to the fitting to relieve stress before following the axis of the sample cell

through the region of irradiation, staying in line with the strut of the inner radiation shield. This

60 cm fill line has to leave the Displex head through a modified feed-through fitting. Since the fill

line goes from room temperature at the feed-through to sample temperature at the cell, it is the

major source of heat to the cell. There is no way to anchor the fill line to the cold finger to reduce

heat flow, since that would cause the helium to freeze at that anchor point, causing a blockage in

the fill line.

The fill line has wrapped on it a heater wire of 98 Ω/m manganin in the region from the cell

to the outer radiation shield. This is connected to a variable current supply on the outside. This

heater can be used to add further heat to the sample cell, by way of the fill line.

3.4 Electronics

Many pieces of electronics were used during the experiments. Most monitored and set the conditions

of the measurements, such as pressure and temperature. There were electronics pertaining to the

use of the X-ray source, and those will be discussed later in that section.

Two different temperature controllers are used, one for controlling the Displex’s temperature

and the other acting as a thermometer [16]. The one acting as the Displex controller connects

to sensor A, in addition to the normal way it was connected by the manufacturer to the control

thermometer and the cold finger heater wire. The other controller connects to sensor B, which is

the most important sensor; this controller has the calibration curve for sensor B entered into it.

The heater wire to the fill line connects to a current supply [17]. The current is adjusted by

hand and is normally used only during crystal growth.

The strain gauges that are mounted on the strain gauge cell (SGC) connect to a strain gauge
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meter [18] by way of a shielded twisted-pair cable. The four strain gauges and the meter form

a full strain gauge bridge, with two extra leads that compensate for the resistance in the leads

themselves [19]. The meter is very accurate and is set to maximum sensitivity, as it measures the

strain voltage across the bridge. It produces a voltage between -2 and 2 V, which is proportional

to the strain voltage. There is also a LCD readout on the meter, but it is rarely used.

The output voltage from the strain gauge meter is connected to and measured by a digital

multimeter [20]. The sensitivity of this measurement has one more digit than the readout of the

strain gauge meter. This last digit is not wholly accurate, however, as it fluctuates for half the

range of this last digit; this added sensitivity is needed to see the pressure drop that occurs when

the helium freezes.

A PC computer running Microsoft Windows is used to interface with the Displex temperature

controller. It is also used to log certain data: the strain gauge voltage; the set point temperature for

the Displex; the temperatures of sensors A, B, and the control sensor; and the time. The program

that acts as interface and data-taker was written using LabWindows/CVI [21]. In order for the PC

to interface with the two temperature controllers and the digital multimeter, the PC has a GPIB

card [22] installed inside of it, which uses special cables and the GPIB communication protocol to

“talk” to these instruments.

3.5 X-ray source

The X-ray sources used in these experiments were synchrotrons. One beamline used was X-14A

at the National Synchrotron Light Source, which is located at Brookhaven National Laboratory in

Upton, New York. The beamline 1-BM-C was also used at the Advanced Photon Source, which is

located at Argonne National Laboratory in Argonne, Illinois.

There is one reason why a synchrotron must be used instead a rotating anode source: flux. For

our purposes, a synchrotron beamline is roughly six orders of magnitude brighter (for a bending

magnet beamline, as described later). We need this high flux in order to see the weak, large Q-

valued peaks; without these peaks, the Q range is severely limited, and the resulting Debye-Waller

measurements have large errors.

There are also several reasons why a synchrotron makes this experiment much simpler. First,

a synchrotron beamline’s optics allow the energy of the beam at the sample to be tuned (2–40
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keV for X-14A, and 6–20 keV for 1-BM-C), simply by changing the angles of the monochromator

crystals; with a rotating anode source, one has to choose energies from the characteristic X-ray

energies of the target element. The length of the beamline and all the optics at a synchrotron

result in an X-ray beam that is less divergent and has much less background. Radiation coming

from a synchrotron is naturally polarized, thus simplifying the analysis of the data afterwards. The

use of a monochromator results in a high energy resolution, which gives a high Q resolution.

There are some negative things that one must contend with at a synchrotron. There are few

synchrotrons and many people wanting to use them, so one can only get a limited amount of time

at a beamline; if something goes wrong, you will most likely have to wait at least a half a year to

try again. Since the X-rays at a synchrotron come from a current of electrons or positrons in the

ring, and this current decays, the incident X-ray flux is constantly decreasing; thus, the incoming

flux needs to be measured at all times with a beam monitor. Another annoyance is that the beam

may ‘wander’, due to the current changing its position in the ring; if an experiment depends on the

beam being at the exact same position at all times, this can cause problems.

At a synchrotron, there are both bending magnet beamlines and insertion device beamlines.

A bending magnet is one of the many magnets that bend the current in the ring into a circle;

every synchrotron has these beamlines since these magnets must be in place. An insertion device

is something put into the current ring that ideally does not change the direction or energy of the

particles in the ring (electrons at the NSLS or positrons at the APS), and the insertion device

results in a better quality of produced X-rays. They are made by lining the beam channel with pair

after pair of magnets, with each pair creating a magnetic field in one direction, and the direction

of the magnetic field reversing with each subsequent pair. This alternating magnetic field causes

the trajectories of the electrons or positrons in the ring to bend back and forth, creating X-rays

with each bend. This results in a brighter and more focused X-ray output than that of a bending

magnet. There are two different types of insertion devices, wigglers and undulators. Wigglers are

optimized for sheer number of photons produced, with the energy of the resulting X-rays varying

greatly. An undulator is optimized for a particular narrow energy range, but at the cost of the

total number of photons produced.

Insertion device beamlines create much more X-rays than a bending magnet beamline. How-

ever, this experiment does not need the undulator’s high energy resolution, nor would it make
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efficient use of a wiggler’s wide range of photon energies. This is important, since demand for

beamtime at an insertion device beamline is greater than the demand for beamtime at a bending

magnet beamline. From previous experience, the flux produced at a bending magnet beamline is

quite sufficient for the experiment that is the subject of this thesis, so that is what was used.

The choice of photon energy is important to the experiment since it determines the diffraction

angle, 2θ, for each reflection. In order to try to spread the reflections out, so as to get a good

resolution, the energy of the photons is set high. However, the energy should not be set too high,

since for any particular reflection, there is a cutoff energy above which the peak is no longer visible.

Therefore, the highest Q reflection that can be realistically measured needs to be considered. In

terms of practicality in dealing with all the equipment and the detector, we did not want to go

above a 2θ of 90̊ , since there was a danger of the Displex running into the diffractometer, or the

diffractometer running into upstream optics (slits, ionization chamber, beampath, etc.). Amidst

all of this, there is also the consideration that the Lorentz polarization factor we use, (sin(2θ))−1,

is at a minimum at a 2θ of 90̊ . Based on the above considerations, the energy that was used in

all measurements was 16.00 keV.

3.5.1 Beamline design

The beamlines used (X-14A at the NSLS [23] and 1-BM-C at the APS [24]) both had very similar

designs. Figure 3.5 is a drawing of the beamline optics of both beamlines.

Once leaving the ring, the photons encounter a cylindrical grazing incidence mirror, which

has the axis of curvature horizontal and perpendicular to the beam; this mirror focuses the beam

in the vertical direction, and also absorbs all photons that have an energy above a critical value

determined by the scattering angle. At X-14A, the mirror is made out of aluminum which is coated

by nickel, then platinum. At 1-BM-C, the mirror is palladium coated, water-cooled, and is set so

the critical energy is 24 keV.

After the mirror, the beam goes through a beryllium filter, which helps to cut out the unwanted

lower energy photons, and consequently takes a high heat load because of this.

The next piece of optics is a double crystal monochromator, which use silicon crystals with

matching reflection planes of (1 1 1), with the photons leaving the monochromator in the same

direction as they entered. At 1-BM-C, it is also possible to use either the (2 2 0) or (4 0 0) reflection.
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Figure 3.5: Drawing of the beamline optics, with distances not to scale and angular relationships in-
correct. I) Mirror, cylindrical with axis perpendicular to beam direction, which vertically collimates
the beam and also sets a critical energy above which photons won’t be reflected. II) Beryllium filter.
III) First silicon monochromator crystal, which selects the photons’ energy, and is water-cooled.
IV) Sagitally bent second silicon monochromator crystal, which focuses the beam horizontally.
V) Ionization chambers used as beam intensity monitors. VI) Four or six circle Huber diffractome-
ter. VII) Detector. The beamline optics for 1-BM-C at the APS also has a mirror similar to I
immediately after IV, which focuses the beam vertically; X-14A at the NSLS has this same type of
mirror, but it was not used.

The first crystal is a flat piece of silicon. Its angle, relative to the incoming beam, is tuned to what is

needed for the desired energy, with the rest of the photons (except for harmonics) getting absorbed,

creating a large amount of heat, which is removed by water cooling. The second crystal is sagitally

bent, so as to focus the beam horizontally. This crystal is set to the same angle as the first. The

bending radius of this bent crystal can be adjusted, so as to change the horizontal focus, such as

to the sample position.

At this point, the beam is not horizontal, due to the beam being scattered at a small angle at

the first mirror. At both beamlines, there is a vertically focusing mirror at this point which also

reflects the beam down by the same angle as the first mirror. This mirror is optional and can be

removed if not wanted. Since we used a large beam at X-14A, this mirror was not employed; instead,

the entire beamline after the first mirror was rotated about the first mirror, in order to match this

angular offset. At 1-BM-C, where we had a narrowly focused beam, this second vertically focusing

mirror was employed.
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Figure 3.6: Diagram showing the geometry and relations of the angles 2θ, ω, χ, and φ, which make
up the degrees of freedom for the four-circle diffractometer.

3.5.2 Diffractometer

The crystal needs to be in the center of the beam, with provisions for rotating the crystal into any

orientation, and there also has to be a way to rotate a detector about the crystal’s center. What

is needed is a goniometer; at both beamlines, a Huber diffractometer [25] is used. At the NSLS, a

four-circle diffractometer with a split-ring χ circle is used; at the APS, a six-circle diffractometer

is used (with only four of the circles in use).

Three of the four circles are used to orient the crystal, while the last is used to rotate the

detector about the crystal’s center. The detector uses what is normally labelled the 2θ circle.

The circle’s axis of rotation is horizontal and perpendicular to the beampath. There is an arm on

the circle, with the detector mounted on its end. The description of the three orientation circles

will be from the outside to the inside, as the circles are nested within one another. First, there

is the ω circle, which has the same rotation axis as 2θ. Then there is the χ circle, whose axis

of rotation is always perpendicular to ω ’s. Lastly, there is the φ circle, whose axis of rotation is

always perpendicular to χ ’s. The Displex is mounted directly onto the φ circle. Figure 3.6 is a

diagram showing the geometry of these angles.

When it comes to the positions of the motors, it is important to understand the distinction

between the software values of the positions and the hardware values of the positions. The software

44



values are those that are stored inside the computer program that controls the motors themselves.

The hardware values are those that are physically present on the counters that are mounted next

to the motors. The two values for a motor do not have to agree, since that would assume that the

motor positions are perfectly calibrated; in reality, there are small offsets to the motor positions

that need to be accommodated, and these correct values are stored in the software. Even if the

values did correspond perfectly, sometimes it is beneficial to define an offset and multiplier to the

actual value. Even though the hardware and software values don’t have to agree, the relationship

between the two needs to be recorded; if the software values become corrupted, they can be regained

from the counter readings.

In order to change the crystal’s orientation so that a reflection can be brought into the detector’s

angular view, only two circles are needed. The third circle is useful in the case that bringing

the other two circles to desired values is physically impossible due to physical constraints of the

equipment; this third circle can be changed to avoid the obstruction in some cases. The third circle

is also useful if one wants to rotate the crystal around the reflection. In general, ω and χ move

while φ is set fixed.

Before the experiment can start, the diffractometer needs to be set up. This entails aligning

the beam and diffractometer with respect to one another, setting up the software values for the

motor positions, mounting the detector, and setting up the slits. The Displex also needs to be

mounted onto the diffractometer. All of this is described in Appendix G.1.

Many things become mounted onto the diffractometer when setting up the experiment. The

Displex is mounted onto the φ circle, and has high pressure helium supply and return lines, elec-

tronics cables, high pressure sample fill line, and a vacuum line coming off of it. There are also

detectors, slits (motorized and fixed), flight paths, attenuators, and ionization chambers mounted

either on or near the diffractometer. This creates a problem in that it is easy for one thing mounted

on the diffractometer to run into something else. This needs to be taken care of by judging and

setting the limits of the motors. This procedure is described in Appendix G.3.

3.5.3 Hutch Equipment

There are a variety of equipment used inside the experimental hutch. Figure 3.7 shows the relative

positions of most of them.
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Figure 3.7: Diagram of the positions of equipment in the hutch. I) Ionization chamber I00. II) Flight
path. III) Motorized sample slits. IV) Ionization chamber I0. V) Sample position. VI) Scatter
slits. VII) Flight path. VIII) Motorized detector slits. IX) Detector. The lengths shown for the
NSLS are L1 = 22.2 cm, L2 = 54.2 cm, and L3 = 13.0 cm, while the lengths for the APS are
L1 = 30.0 cm, L2 = 77.8 cm, and L3 = 20.3 cm.

The detector used depends on where the experiment was conducted. At the NSLS, a xenon-

filled proportional counter was used; at the APS, a NaI scintillation counter was used. Neither

detector has a very large dynamic range, making the use of incident beam absorbers mandatory.

The detector gives out a voltage pulse for each photon detected, with it magnitude proportional to

the photon energy. Electronics are used to set a voltage window that extends from just above and

just below the voltage corresponding to the desired photon energy. This window will exclude noise

which is at low voltages; it also excludes the photons of harmonic energies that pass through the

monochromator, which will be a multiple of the desired energy.

In order to compensate for the poor scaling of the detectors and the fact that the peak in-

tensities vary greatly with Q, attenuators had to be used. At the NSLS, the attenuators were

made of aluminum alloy and copper; at the APS, the attenuators were made of molybdenum and

copper. A precise measurement of the absorber thickness would have to be made in order to use

the standard formula for finding the absorption (see Appendix A), but the actual absorptions were

instead measured directly with the X-ray beam (see Appendix G.5); for the aluminum alloy atten-

uators, the absorptions had to be measured directly, since the alloy composition is unknown. In

order to change what absorber is in the beampath, some sort of device has to be employed: at the

NSLS, a wheel is used, which is run by a stepping motor that had different absorbers mounted at

different positions; at the APS, an air actuated spring-loaded absorber mount was used, which fits

inside of a pumped out beam path, where each attenuator can be inserted or extracted individually.

Unfortunately, during both runs, we had to insert some extra absorbers by hand, since diffracted

intensity variations were very large.

In order to compensate for the varying photon flux due to the changing ring current, the
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amount of photons incident upon the sample has to be measured with a monitor. This is done by

use of a nitrogen-filled ionization chamber that is in the path of the X-ray beam. The chamber is

designed to absorb as little of the photons as possible, having a Kapton window for the entering and

leaving of photons to the chamber. The nitrogen is kept constantly flowing through the chamber,

which is supplied by a bottle with a regulator. As the X-rays travel through the nitrogen filled

cavity, a small percentage of the photons are absorbed by the nitrogen, ionizing the atoms. On

opposite sides of the chamber are two electrodes, which have an applied voltage differential; these

electrodes draw the oppositely charged particles to them, creating a current in the electrical circuit.

This current is proportional to the flux passing through the chamber. This current is measured by

a current amplifier, which produces a voltage proportional to the current, which is then measured

and converted into a count rate. The ionization chamber does attenuate the flux a small amount,

but that can be measured, and since it scales linearly with the flux, it doesn’t matter for this

experiment.

There was another detector used, a PIN diode, which uses an applied voltage, similar to that

of an ionization chamber. It is used for aligning the beam, since it can take the abuse of the direct

beam without getting damaged, unlike the normal detectors used. It is subject to thermal drift

and has poor sensitivity, which is why it is not used for taking data.

Slits are very important, and at two least two motorized sets are essential. One puts a set of

slits where the beam enters the hutch, opened somewhat wider than the desired beamsize, which

blocks out undesired background radiation. One employs one pair of motorized slits just before the

sample, which sets the size of the beam as it hits the sample and also helps to block background

radiation. On the detector arm after the sample, there is a flight path. One puts a set of slits on

the front end, opened wide horizontally, but narrow vertically. A motorized set is at the other end,

just in front of the detector. The separated slit pairs on the detector arm mask off any photons

that come from anything that is not close to the sample, since photons have to be able to pass

both sets of slits which are centered on the sample (if aligned correctly), thereby eliminating a good

deal of background. This elimination is vital, since the beam has to pass through both Lexan and

beryllium before reaching the sample and is scattered by both. The slit set directly in front of the

detector needs to be motorized so it can go between closing down when centering a peak to a high

precision and opening up when taking an integrated intensity scan.
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Chapter 4

Data

4.1 Integrated Intensity Data Collection and Correction

Since the property that is being measured is the Debye-Waller factor, which relates the peak inten-

sity of different reflections, integrated intensity measurements are made at reflections. Depending

on the type of measurement, either many different reflections are measured at a given temperature

(Q-dependent), or one reflection is measured at many different temperatures (T -dependent).

The data is collected by taking rocking curves of reflections. In order to take rocking curves,

reflections need to be found and centered; this is a tedious process which involves searching for

several reflections and creating an orientation matrix, as described in Appendix G.8. A centered

reflection implies that the ω, χ, and φ motors are at values where the desired plane of reflection in

the crystal is at the correct Bragg angle with respect to the beam, and that the 2θ motor is at a

value such that the detector is at twice the correct Bragg angle with respect to the beam.

Rocking curves are taken by scanning the ω motor through the peak, from the tails on one

side of the peak to the other. During the scan, the ω motor will stop periodically as determined

by the step size, and during this stop, the detector records the number of diffracted photons that

strike it. The length of the pause at each stop is determined by either a time gate or a monitor

count gate. During the scan, all motors other than ω are kept still.

At this point, the scan has to be corrected at each individual scan point for two experimental

difficulties: the effects of dead time, and the variations in the incident flux as measured by a

monitor. Once this is done, the background in the scan needs to be subtracted, which takes into

account the attributes of the scan shape itself.

Once this is done, all that should be left is a peak that goes to zero on both sides. The area

under the peak is integrated, giving a raw integrated intensity value for the reflection.

Since these integrated intensity values are to be compared to one another, the effects of the
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different conditions of the scans on the intensities need to be corrected for. If the measurement

involved more than one single attenuator, the effect of the absorption of the incident beam needs

to be adjusted. Since the crystal is not spherical and is oriented differently in the beam for each

reflection, a varying volume of helium is illuminated, causing varying numbers of electrons to

interact with the photons, depending on the angles of the sample cell in the beam; this volume

change needs to be taken out.

At this point, the differences in intensities between the different reflections is that of the

theoretical formula for the intensities of elastic peaks:

Ii ∝ I0 F 2 e−Q2〈uQ
2〉 L. (4.1)

Since the property that is being investigated is the Debye-Waller factor, e−Q2〈uQ
2〉, the other factors

need to be removed from the measured integrated intensities. These factors are the structure

factor, F 2, and the Lorentz polarization factor, L. Once those are gone, the ratio of two different

measurements is due to the Debye-Waller factor.

4.1.1 Dead Time Correction

X-ray detectors that were used are of the scintillation counter variety. Each time a photon strikes

it, an electrical pulse, whose maximum voltage is proportional to the energy of the photon, is sent

to the detector electronics. The electronics are set to count only pulses of a certain height range,

in order to weed out the background and the photon harmonics. The pulse sent has a temporal

width, and if any any other photon hit the detector at the same time, the electronics only sees one

count (or none if the combined pulse height is higher than the window maximum).

This is a problem that worsens as the count rate increases, since the probability of photons

striking the detector within one pulse width, or dead time, increases. This nonlinear response of the

detector at high flux can be dealt with by measuring the dead time τ of the detector and correcting

the count rate with

ntrue = −1
τ

ln(1− τ nobs) ' nobs

1− nobs τ
(4.2)

where nobs is the measured count rate, and ntrue is the true count rate. The procedure for the

measurement of the characteristic dead time of the detector, is in Appendix G.4. The measured
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dead time for the detector used at X-14A was 5.6 µs, while the dead time for the detector used at

1-BM-C was 0.10 µs.

So, the correction is made by using Eq. 4.2 for each individual scan point. Because of the need

for the count time in the equation, the time of each count needs to be recorded during a scan. A

time gate can be set to a desired value so that every count last the specified time. If the gate used

for counting is the monitor, the count time will vary.

4.1.2 Incident Flux Monitor Correction

The flux that reaches the sample can vary over time, due to such things as the current in the storage

ring decreasing with time, changes in the orbit of the electrons (or positrons) in the storage ring,

or changes in temperature of the monochromator.

The way to compensate for this is to have an incident flux monitor in the beamline, ideally after

the sample slits. This monitor measures the flux that passes through, and is recorded simultaneously

when the main detector is being used. To correct for this varying flux, the detector count is divided

by the monitor count for every individual scan point.

The monitor can be set up as the count gate, such that a count is terminated when the monitor

count reaches a certain value.

4.1.3 Background and TDS Subtraction

There are two different types of background that needed to be subtracted. Background caused by

scattering from the helium crystal and the background caused by scattering from everything else.

The scattering from everything non-helium is normally relatively flat over the range needed for

an integrated intensity curve. There is the worry about beryllium peaks, but since rocking curves

do not involve a change in 2θ, the intensity caused by a beryllium peak should not vary throughout

the scan.

The background caused by the helium crystal comes in several forms, although only two are

really important. The first is Compton scattering, which is inelastic scattering by electrons. The

other type is thermal diffuse scattering (TDS), which is inelastic scattering from phonons in the

crystal.

The background due to Compton scattering is diffuse. It is a decreasing function as Q increases,
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with no peaks of any kind. Within the small scan ranges of the rocking curves, the Compton

scattering background is constant; a rocking curve leaves 2θ fixed during the scan, so the Compton

component of the photons detected should remain fixed.

The background due to TDS is much more complex. As discussed in Sec. 2.1.4, first order TDS

is caused by interaction with one phonon (either creating or destroying), second order TDS involves

two phonons, and so on. The background due to TDS has peaks, and they are at a maximum at

the positions of elastic peaks, making them troublesome when trying to remove them. The second

order TDS is extremely weak, and has very broad peaks, so all orders over one can be ignored.

The first order TDS has somewhat sharp peaks, with the ratio of the TDS counts to elastic counts

increasing as Q increases. The effect of not correcting for TDS on lattice parameters is negligible,

but the effect upon the Debye-Waller factor is to reduce it, underestimating the motion of the

atoms [1].

The theory of first order TDS contribution to integrated intensity scans has been studied [2],

with strategies given on how to subtract it. The methods are quite complex, depending on the

elastic constants of the crystal, the divergence of the X-ray beam, the solid angle of the detector,

the width of the scan, etc. There are several programs available for calculations [3] and there are

ways of doing rough TDS estimates [4] if the exact elastic constants are known.

However, it has been shown that with the advent of synchrotron radiation, the amount of con-

tribution of TDS to the measured integrated intensity scan is reduced to a negligible contribution,

as compared to a traditional X-ray tube [5]. This is due to the small divergence of the X-ray beam

and the sharp peaks from the crystal, which allow for a small solid angle for the detector and small

scanning ranges. Because of these considerations, TDS calculations won’t be done on the data.

So, in order to correct for background, the first thing that needs to be done is look at the

background scan at the same position, when the crystal is melted, in order to see if the background

is nonlinear. If the background is linear (it always was for this experiment), the background of a

scan was removed by simply going to the tails of a peak, and subtracting the amount under the

straight line through the tails. If the background is not linear, the background scan has to be scaled

to the data scan, and subtracted.
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4.1.4 Scan Integration

Integration of the scan is done by multiplying each adjusted detector value by its step size (to give

the area of the column), and then summing all of them together. In theory, the number of steps

summed is irrelevant, since it is assumed that the peak went to zero at the boundaries of the scan.

Since the step size does not change during a scan, it is more convenient to find the integrated

intensity by

Iint =
∆ω

N

N∑

i=1

ci (4.3)

where N is the number of scan points, ∆ω is the total scan width, and ci is the adjusted detector

count at the ith scan point.

4.1.5 Attenuator Correction

The detectors used have a maximum count rate, after which they are unreliable, even with dead

time corrections. Because there is around a factor of one million in intensity difference between the

low Q peaks and the high Q peaks, and the dynamic range of the detector is around a thousand,

there have to be attenuators in the beam for the brighter peaks.

The attenuators came from different materials. The absorption of each attenuator was mea-

sured directly (see Appendix G.5), and the theoretical value was computed from the thickness and

the linear absorption coefficient (see Appendix A) as a check. To correct for the attenuators, the

intensity of the peak is divided by the experimental absorption of the attenuator.

4.1.6 Volume Corrections

When measuring the rocking curves for different reflections, there is a problem caused by the fact

that going to the different motor positions changes the angle between the cell and the oncoming

beam. Changing this angle causes the volume illuminated by the X-ray beam to likewise change;

this in turn causes the reflected intensity to change. This can be accommodated by computing the

volume for each configuration and dividing it from the intensity. The actual volume is not required,

but a ratio to some reference is. The reference value will be the minimum volume possible.

An assumption has to be made about the size of the beam cross-section at the sample’s position

(called the beam spot). There are two different conditions corresponding to different experimental
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runs, which leads to two different cases. Neither condition gives an exact result, especially since it

assumes that the flux density distribution is constant across the beam spot.

In order to find the ratio relations, matrices are used. A right-handed rectilinear coordinate

system is set up as following: x̂ is towards the X-ray source, ŷ is towards the ring, and ẑ is up.

The unit vector representing the cell axis needs to be set up,

Ψcell(ω = 0, χ = 0) =




0

−1

0




. (4.4)

The vector is created for the case when ω = 0 and χ = 0, and is generalized through the use of

rotation matrices. The two matrices used for rotations of the cell axis vector in ω and χ need to

be set up,

Ωχ,ω=0 =




1 0 0

0 cos(χ) sin(χ)

0 − sin(χ) cos(χ)




and Ωω =




cos(ω) 0 sin(ω)

0 1 0

− sin(ω) 0 cos(ω)




. (4.5)

A rotation matrix for φ is not needed since it is only the identity matrix. The matrix for χ is set

up assuming ω = 0, and must be applied first.

The rotation matrices are applied to the cell axis vector in the correct order to get a general

value for any χ and ω,

Ψcell(ω, χ) = Ωω Ωχ,ω=0 Ψcell(0, 0) =




sin(ω) sin(χ)

− cos(χ)

cos(ω) sin(χ)




. (4.6)

Very Small Beam Spot

The assumption in this case is that the beam spot will be considered to be infinitely narrow, allowing

the volume to be proportional to the length of the beam’s path through the cell. The beam can be
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represented by a unit vector corresponding to the beam direction,

Ψbeam =




−1

0

0




. (4.7)

The actual value that expresses the ratio is the inverse of the sine of the angle between the

cell’s axis and the direction of the incident X-ray beam. The sine of this angle is obtained from the

absolute value of the cross product between the cell axis vector and beam direction vector. The

cross product results in

Ψbeam ×Ψcell(ω, χ) =




−1

0

0



×




sin(ω) sin(χ)

− cos(χ)

cos(ω) sin(χ)




=




0

sin(χ) cos(ω)

cos(χ)




. (4.8)

Taking the length of this vector and inverting, the resulting ratio of the volume to its minimum is

ratio = CS(ω, χ) =
1√

cos2(χ) + sin2(χ) cos2(ω)
. (4.9)

This formula is used for the data taken at the APS, where the beam spot was very small, being

around 0.2 mm square. The application of this correction made the linear fits for the data better

in all cases.

Very Wide Beam Spot

The assumption in this case is that the beam spot will be considered to be infinitely wide with

a infinitely thin height, allowing the volume to be proportional to the area of the beam’s path

through the cell. The beam can be thought of as a plane, with an associated normal,

Ψnormal =




0

0

1




. (4.10)
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The actual value that expresses the ratio is the inverse of the cosine of the angle between the

cell’s axis and the incident X-ray beam’s normal. The cosine of this angle is obtained from the

value of the dot product between the cell axis vector and the beam’s normal vector,

Ψnormal ·Ψcell(ω, χ) =




0

0

1



·




sin(ω) sin(χ)

− cos(χ)

cos(ω) sin(χ)




= cos(ω) sin(χ) . (4.11)

Taking this value and inverting, the resulting ratio of the volume to its minimum is

ratio = CW(ω, χ) =
1

cos(ω) sin(χ)
. (4.12)

This formula corresponds to the data taken at the NSLS, where the beam spot was broad,

being around 2 mm wide and 1 mm high. For the crystal diameter of 0.813 mm, χ needs to fall in

the range 48̊ < χ < 132̊ in order for this approximation to hold. For the NSLS data, where the

χ values were very restricted, this condition is satisfied.

This approximation is not applied to the data, however, since its application makes a linear

fit through the data worse for most measurements. This is most likely due to the fact that this

approximation assumes a single crystal inside of the sample cell, which is not always reality. There

are normally several crystals illuminated with a large beam, and an increase in helium illuminated

does not automatically mean an increase in illumination for a crystal.

4.1.7 Lorentz Factor

For horizontally polarized light, the Lorentz factor is

L(θ) =
1

sin(2θ)
. (4.13)

Using the value of 2θ, the value of L for each reflection can be easily computed. The intensity is

then divided by L.
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4.1.8 Structure and Form Factors

The structure factor has to be removed from the intensity measurements. The structure factor is

always some constant multiplied by the squared form factor (see Appendix D.1).

The constant for fcc can be taken as unity, but the relationship for the hcp peaks is more

difficult, since it is not a true Bravais lattice. Once the constant is found, the intensity value is

divided by it.

The form factor depends on the value of Q, which comes from the value of 2θ and λ. The form

factor is found using fits to calculated form factors [6] and the intensity is divided by its square.

4.2 Determination of Lattice Parameters

The lattice parameters are useful to know for a couple of reasons. They are used to compute the

molar volume, and in the case of hcp, the c/a ratio is used to test whether the crystal is ideally

close packed.

A source of error for lattice parameter measurements is an offset in the 2θ angle. Should

either the detector slits or the scatter slit become slightly off center, the offset in 2θ will occur.

This effect shows up in the lattice parameter values as a constant increasing or decreasing of values

with increasing 2θ angle. This can be fixed by adding a constant to 2θ for each reflection, and

recomputing the lattice parameters; this is done until there is no increase or decrease of the values

in 2θ. This offset is then also applied to the Debye-Waller data to improve the Q values.

In order to find the lattice parameters for a crystal using only the knowledge of the crystal

structure and the elastic peaks, the θ value of a reflection must be found and the corresponding h,

k, and ` values must be known, as well as the wavelength of the photons, λ. The resulting relations

come from Bragg’s Law and the interplanar distance formulas.

4.2.1 fcc Lattice Parameter

There is only one lattice parameter for a crystal structure based on a cubic lattice, such as fcc, and

thus determining it requires only one reflection. The relation is

a =
(

λ

2 sin(θ)

) √
h2 + k2 + `2. (4.14)
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4.2.2 hcp Lattice Parameters

Since a crystal structure based on the hexagonal lattice, such as hcp, has two lattice parameters, it

takes two reflections to determine them. However, the two reflections (h1 k1 `1) and (h2 k2 `2) have

to fulfill the relation
h1

2 + h1k1 + k1
2

`1
2 6= h2

2 + h2k2 + k2
2

`2
2 (4.15)

in order to be able to be used. This condition simply determines if they come from the same family

of reflections, since if they do, the information they contain is redundant.

The first thing is to define the variables

ρi ≡ hi
2 + hiki + ki

2 and ξi ≡ `i
2 (4.16)

in order to make the calculations easier. The relations for the lattice parameters are

a = λ

√√√√1
3

(
ξ1ρ2 − ξ2ρ1

ξ1 sin2(θ2)− ξ2 sin2(θ1)

)
and c =

λ

2

√
ρ1ξ2 − ρ2ξ1

ρ1 sin2(θ2)− ρ2 sin2(θ1)
. (4.17)

It is possible to get one of the two lattice parameters from a single reflection, but it needs

to be a reflection that is totally in the h and k directions (“pure a reflection”) or totally in the `

direction (“pure c reflection”). For a (h k 0) reflection, the lattice parameter is

a =
(

λ

sin(θ)

) √
h2 + hk + k2

3
, (4.18)

while for a (0 0 `) reflection, the lattice parameter is

c =
(

λ

2 sin(θ)

)
` . (4.19)

4.3 Experimental Errors

As in all experiments, error was introduced into the measurements. Some errors could have been

avoided, while others could not.
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4.3.1 Error Associated With Integrated Intensity Scans

One type of error that was beyond our control was crystal stability. As described in Appendix G.7.5,

helium crystals are very soft and can do strange things during a set of measurements. The illu-

minated crystal can increase or decrease in size due to crystal boundary movements. A mosaic

reflection is very susceptible to this. The scans taken during the T -dependent are very susceptible

to this problem, since changing the temperature makes the crystal more unstable.

Another uncontrollable error was stability of the incoming X-ray beam. It is assumed that

the X-ray beam has a uniform flux distribution at the sample position, and that its position does

not change. However, this depends very much on the position of the orbit of the electrons (or

positrons) in the storage ring, since the direction of the X-rays as they reach the monochromator is

determined by the orbit. Occasionally the orbit will change unexpectedly, but it normally will not

change much, except for refills. When the ring is emptied and refilled, the orbits will be different;

this is seen directly in the form of having to tweak the angle of the monochromator crystal in order

to maximize the flux at the sample. When one is working with a wide beam (NSLS in our case),

the flux distribution of the photons passing through the sample slits will change, altering results.

When one is working with a narrow beam (APS in our case), the effect is that the beam position

wanders, causing the beam to hit the sample cell off center, and illuminating different volumes of

the cylindrical volume, again altering results. For these exact reasons, we would try to finish a set

of measurements before the ring was emptied.

For the NSLS run, an error that could have been avoided involved with the ionization chambers

that acted as incoming flux monitors. There were two of them, one positioned at the entrance to

the hutch, and one positioned right in front of the sample position. The use of absorbers made

the resulting values of the second monitor somewhat inaccurate, even though we thought we had

compensated. The monitor values used then became the first monitor, with corrections coming in

the form of absorption corrections. The error came from the fact that the first ionization chamber,

since the beamline personnel deemed it of lesser value, was not hooked up to a nitrogen source,

but was open to the atmosphere. This error is actually not terrible when comparing the monitor’s

values to the ring current, but there are subtle oscillations.

For the APS run, a mistake that probably added some error came after the χ circle was

accidentally run into the beam path, upon which the sample slits were mounted. This misaligned
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the slits with respect to the goniometer center. It was impossible to fix this error completely, since

that would involve disassembling the Displex from the goniometer, which takes a long time, and

half the allotted beamtime had already been used. This mistake was corrected to a good degree,

owing to the fact the the displacement was almost entirely vertical. The vertical slits were scanned

while 2θ was at the position of a beryllium ring, in order to look for a maximum intensity which

would correspond to the center of the cell.

Another problem with the APS run was with the motors. When the motors were told to move

to a specific value, they sometimes moved only partially or not at all. For most of the motors,

this was not too big of a problem since it was normally obvious that the move did not occur. The

one major exception was the case of the detector slits, which had to be set exactly the same for

every scan, and it wasn’t obvious if they were at incorrect positions. They were found to be wrong

several times, and they were most likely wrong other times and weren’t detected.

One last problem with the APS data occurred during the measurement of data set 12. The

monochromator crystal was tweaked in order to maximize the flux at the sample. Upon doing so, it

was noticed that the flux detected by the monitor and the counts in the detector for the last peak

scanned were disproportionate. It seems the beam position would move when the monochromator

was tweaked, which was not supposed to happen. To correct for this, the last scan before the tweak

was redone, and all subsequent measurements were normalized to the difference between the two

measurements of the same peak.

4.3.2 Error Associated With Lattice Parameter Determination

The main source of error for lattice parameter measurements is that for most of the peak centers

used, only a 2θ scan was used to find the center with respect to 2θ. A radial scan should have been

used instead; a radial scan is where 2θ and ω move at the same time, but 2θ moves at twice the

angular velocity of ω. Because of this, there is a loss of precision of the center with respect to 2θ.

4.4 Measurement Conditions

The data presented in this thesis was taken at two different experimental runs, with each being

at a different beamline (each beamline is described in Sec. 3.5.1). The first run took place at the

NSLS in the summer of 1996, while the second run took place at the APS in the summer of 1998.

61



Both Q-dependent and T -dependent scans were taken at the NSLS, but only Q-dependent scans

were taken at the APS. The rest of this section discusses the parameters of each set of scans, while

the actual values for every integrated intensity scan can be found in Appendix F.

4.4.1 Crystal Characteristics

From the observation of the freezing and melting signatures of the crystals, the freezing temperature

is known (see Appendix G.7.2). This temperature can be measured twice, when freezing (Tf) and

when melting (Tm), in order to get a good measurement. Using the average of these temperatures

and the experimentally obtained thermodynamic relations (see Appendix D.2), the pressure at

freezing (Peq) is found, which is then used to determine the molar volume of the crystal at freezing

(Veq). Tables 4.1 and 4.2 have these values for the crystals that the Debye-Waller scans were

performed upon. The uncertainty in T comes from the fact that the temperature plateau at freezing

has a slight slope. Sometimes only one of the signature temperatures was able to be determined.

The temperature given is the value measured by sensor B.

Certain hcp crystals were grown when the pressure was above the hcp-fcc-liquid triple point.

The initial crystal formed was fcc, and an hcp crystal was formed by further cooling.

4.4.2 Crystal Quality

The quality of the crystals used during the runs varied widely from almost perfect to very mosaic.

The quality can be judged qualitatively from the use of pictures and rocking curves. These data

are given in Tables 4.3 and 4.4.

Looking at the Polaroid pictures of each crystal and knowing the crystal structure, the number

of visible crystals can be estimated; this method is not fool-proof, since only a limited scan in ω was

possible when taking the pictures. The main indicator is the reflection with the lowest Q value,

which is normally the strongest. For an fcc crystal, a 4-fold symmetry of the 111 reflections is

expected, while for an hcp crystal, 6-fold symmetry of the 100 reflections is expected. Knowing

the symmetry of these reflections, and using the beryllium powder rings as guides, it is possible to

infer the number of crystals.

The extent of the mosaic quality of the crystal can be inferred from the rocking curves. If

there is one narrow peak, this crystal is most likely ideal. If the reflection has two peaks, but the
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Table 4.1: NSLS 1996 Crystal Characteristics
Crystal Helium Crystal Tf [K] Tm [K] Peq [MPa] Veq [cm3]
Label Isotope Structure (± 0.02) (± 0.02) (± 0.3) (± 0.006)

1 3 hcpa 18.55 167.9 11.587
3 3 hcpa 18.56 168.0 11.585
4 3 fcc 18.56 18.56 168.0 11.585
12 3 hcp 16.92 16.96 146.6 11.908
13 3 hcp 14.95 14.93 121.6 12.363
15 3 hcp 13.24 101.6 12.812
16 4 fcc 20.68 20.73 187.5 10.973
18 4 hcp 14.78 14.82 110.5 12.135

a The crystal went through an fcc phase before changing to hcp.

Table 4.2: APS 1998 Crystal Characteristics
Crystal Helium Crystal Tf [K] Tm [K] Peq [MPa] Veq [cm3]
Label Isotope Structure (± 0.02) (± 0.02) (± 0.3) (± 0.006)

5 3 hcp 13.81 108.2 12.654
12 3 hcpa 17.90 17.84 158.7 11.718

a The crystal went through an fcc phase before changing to hcp.

tails slope gently down to zero as with a ideal crystal, the crystal is composed of two sub-crystals

slightly out of orientation. If the peak has an irregular shape, or if there are bumps in the tails,

this shows that the crystal is mosaic; the degree of the mosaic depends on how misshapen the peak

is. Figs. 4.1 – 4.10 are plots of the rocking curves of two peaks (a high Q and a low Q one) for

each crystal; the plots have some of the tails cut off.
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Table 4.3: NSLS 1996 Crystal Quality Characteristics
Crystal Number of Crystals Reflection Structure
Label Using Image on Polaroid

1 1 strong single peak with weak secondary peak
3 1 strong single peak
4 1 strong and 2 weak single peak
12 1 strong and 1 weak asymmetric mosaic peak
13 2 strong and 1 weak mosaic reflection with 3 strong peaks
15 1 strong and 2 weak wide mosaic reflection with over 10 peaks
16 1 strong and 2 weak asymmetric mosaic peak
18 2 strong asymmetric mosaic peak

Table 4.4: APS 1998 Crystal Quality Characteristics
Crystal Number of Crystals Reflection Structure
Label Using Image on Polaroid

5 3 strong, clustered mosaic reflection with 5 peaks
12 1 strong mosaic reflection with 1–3 peaks
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Figure 4.1: Rocking curves of (1 0 0) and (3 0 0) peaks for NSLS crystal 1.
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Figure 4.2: Rocking curves of (1 0 2) and (2 0 4) peaks for NSLS crystal 3.
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Figure 4.3: Rocking curves of (1 1 1) and (3 3 3) peaks for NSLS crystal 4.
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Figure 4.4: Rocking curves of (1 0 1) and (2 2 0) peaks for NSLS crystal 12.
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Figure 4.5: Rocking curves of (1 0 0) and (3 0 0) peaks for NSLS crystal 13.
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Figure 4.6: Rocking curves of (1 0 0) and (3 0 0) peaks for NSLS crystal 15.
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Figure 4.7: Rocking curves of (1 1 1) and (3 3 3) peaks for NSLS crystal 16.
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Figure 4.8: Rocking curves of (1 0 0) and (2 1 3̄) peaks for NSLS crystal 18.
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Figure 4.9: Rocking curves of (1 0 0) and (3 0 0) peaks for APS crystal 5.
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Figure 4.10: Rocking curves of (0 0 2) and (1 0 7) peaks for APS crystal 12.
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4.4.3 Lattice Parameters and Volumes

Determination of the lattice parameters was done differently for both beamtimes. Once the lattice

parameters were determined, the molar volume is determined using the formulae in Appendix B.2.

Corrections to the 2θ angles were needed for several measurements, since the lattice parameters

increased or decreased with reflection angle. The corrections are: 0.015 was subtracted for NSLS

crystal 4, 0.02 was subtracted for NSLS crystal 13, 0.025 was added for NSLS crystal 16, and 0.11

was added for APS crystals 5 and 12.

Since the reflections for the NSLS beamtime were heavier with h and k indices, the value of a

was solved using high 2θ, pure a reflections. After this, reflections with the highest ` values were

used with the value of a to find the c value.

For the APS reflections, reflections were heaviest in `, so c was solved for using high 2θ, pure

c reflections. After this, reflections with high values in h and k with respect to ` were used to find

the value of a.

The measured lattice parameter data can be found in Tables 4.5 and 4.6.

4.4.4 Scan Parameters

The molar volume values cited below are from the determination of the lattice parameters, which

were used in the equations given in Appendix D.2. The temperature given is the value measured

by sensor B. The scan width corresponds to the width of the rocking curve in ω, and the step size

is the distance between each meaurement.

The labelling of the measurements is based on the number of the crystal as pertaining to the

order grown. If a letter is given, it is used to differentiate between measurements on the same

crystal.

NSLS 1996 Q-Dependent Debye-Waller Scans

The measurement conditions for the NSLS 1996 Q-dependent data can be found in Table 4.7.

For crystals 1, 3, and 4, the amount of helium in the system is the same. Any change in lattice

parameters between measurements 1A, 1B, and 3 — the hcp crystals — comes from vacancies in

the crystal.

Crystal 4 has two sets of measurements with identical conditions. The data is not placed

75



Table 4.5: NSLS 1996 Q-dependent Lattice Parameter Data
Measure- a [Å] c [Å] c/a V [cm3]

ment ±0.0003 ±0.0004 ±0.0005 ±0.003
1A 3.0074 4.9051a b 11.568a

1B 3.0072 4.9047a b 11.566a

3 3.0101 4.9103 1.6313 11.602
4 4.2526 11.578
12 3.0359 4.9506 1.6307 11.898
13 3.0757 5.0124 1.6297 12.365
15 3.1119 5.0755a b 12.817a

16 4.1743 10.951
18A 3.0543 4.9825 1.6313 12.120
18B 3.0545 4.9856 1.6323 12.129

a Value derived from average c/a of 1.6310.
b Not enough experimental data to generate a reliable c/a value.

Table 4.6: APS 1998 Q-dependent Lattice Parameter Data
Measure- a [Å] c [Å] c/a V [cm3]

ment ±0.0005 ±0.0004 ±0.0005 ±0.004
5 3.0882 5.0369a b 12.526a

12 3.0109 4.9102 1.6308 11.607
a Value derived from average c/a of 1.6310.
b Not enough experimental data to generate a reliable c/a value.

together because the sets are separated in time by a ring refill. If analyzed together, each pair of

intensities for corresponding reflections have a similar ratio.

Measurement 16 has duplicate scans for one reflection, and triplicate scans for another.

NSLS 1996 T -Dependent Debye-Waller Scans

The measurement conditions for the NSLS 1996 T -dependent data can be found in Table 4.8.

Measurement 3 was taken in several sets, with long periods of time and also beam dumps

between sets. This caused the relationship between the data in these sets to become uncertain, so

data points at the same temperature in different sets tied the intervals together by normalizing one
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set to match the tie point in the other set. It was not possible to check the reproducibility of the

measurements, due to these problems.

APS 1998 Q-Dependent Debye-Waller Scans

The measurement conditions for the APS 1998 Q-dependent data can be found in Table 4.9.

Measurement 12 has an additional correction to it. Midway through taking the set, the

monochromator was tweaked, resulting in the beam position at the sample position moving, chang-

ing the resultant intensity of reflections. This is when we first realized this problem with beam

position stability. This discontinuity was solved by retaking the last scan done which was for the

(2 1 3) peak, and when the data were analyzed, all the values after (2 1 3) in time were adjusted

down to correspond to the change in its intensity.

4.5 Data Analysis

Discussion of the data in this section assumes that the data have already been processed, as

described in Sec. 4.1. Thus, the data will have the atomic form factor, structure factor, and

Lorentz factor already removed.

4.5.1 Q-Dependent Data

Q-dependent Debye-Waller data are collected at one temperature, where rocking curves of as many

reflections as possible are taken. Each set of data produces a 〈u2〉 value.

Basic analysis of this type of data is very straightforward, as long as a simple theoretical model

is assumed, as described in Sec. 2.1.4. The basic expression of the Debye-Waller factor is

I ∝ I0e
−Q2〈uQ

2〉 , (4.20)

where the exponential contains the factor. From this, it is easy to see the relation between different

reflections of the same crystal; the higher the value of Q, the smaller the integrated intensity of the

peak. If the natural logarithm of both sides is taken, as in

ln(I) = −〈uQ
2〉Q2 + (constant) , (4.21)
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Table 4.7: NSLS 1996 Q-dependent Measurement Conditions
Measure- T [K] Scan Width Step Size Detector Slits

ment (±0.01) [degrees] [degrees] V[mm]×H[mm]
1A 17.37 0.4 0.001 5×5
1B 15.86 0.4 0.001 5×5
3 11.52 0.4 0.001 5×5

4A 18.13 0.4 0.001 5×5
4B 18.13 0.4 0.001 5×5
12 16.81 0.4 0.001 2×5
13 14.23 0.4 0.001 2×5
15 12.54 0.8 0.002 2×5
16 20.25 0.4 0.001 2×5

18A 14.23 0.4 0.001 2×5
18B 12.00 0.4 0.001 2×5

Table 4.8: NSLS 1996 T -dependent Measurement Conditions
Measure- Measured Scan Width Step Size Detector Slits

ment Reflection [degrees] [degrees] V[mm]×H[mm]
3 (3 0 0) 0.2 0.001 5×5
18 (2 1 3̄) 0.2 0.001 2×5

Table 4.9: APS 1998 Q-dependent Measurement Conditions
Measure- T [K] Scan Width Step Size Detector Slits

ment (±0.01) [degrees] [degrees] V[mm]×H[mm]
5 13.30 0.25–0.6 0.002 2×4
12 16.90 0.4–0.7 0.002 1.5×2.5
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the equation is linear in terms of Q2.

If an isotropic crystal is assumed, the directional dependence in 〈uQ
2〉 is dropped, as discussed

in Sec. 2.2.3. This is fine for fcc crystals, but care has to be taken when this assumption is made

with hcp crystals. Helium hcp crystals grown during the measurements had a nearly ideal c/a ratio

of
√

8/3, and if this ratio is compared to a plot of 〈uc
2〉/〈ua

2〉 versus c/a for other elemental hcp

crystals as in Appendix E, 〈uc
2〉/〈ua

2〉 for hcp helium should be around 1.2. However, if this is the

case, the data points should separate in terms of ln(I) as Q2 increases, since pure a reflections and

pure c reflections will create separate lines with different slopes, and all mixed reflections will fall

in between these lines.

For this thesis, it will be assumed that hcp helium is isotropic. For the measurements presented

here, this broadening cannot be discerned within the experimental uncertainties. Also, the values

for the other hcp elemental crystals are all for metals, not a noble gas, so the trend set by these

elements might not apply. Helium surely has some anisotropic nature to it, but it was not detected.

So, in order to extract the 〈u2〉 value for a measurement at a given temperature, the data

needs to be plotted logarithmically against Q2. The negative of the slope from a linear fit is the

〈u2〉 value. The resulting error of the slope comes from the fit itself, assuming a good fit [7].

The Lindemann ratio,

L.R. =

√
〈u3D

2〉
r

=
√

3〈u2〉
r

(4.22)

where r is the nearest neighbor distance and 〈u3D
2〉 is the three dimensional mean squared atomic

deviation, can also be calculated. The value of r comes from the measured lattice parameters (see

Appendix B.2), while 〈u3D
2〉 = 3〈u2〉 for a Gaussian momentum distribution such as helium’s.

Since the c/a ratio for hcp is almost ideal, the lattice parameter a is used for r.

The 〈u2〉 and Lindemann ratio values for the measurements as derived from the linear fits are

given in a couple of tables. Table 4.10 is the table for 3He, while Table 4.11 is the table for 4He.

In addition to these tables, Table 4.12 and Table 4.13 are tables summarizing the measurement

conditions for 3He and 4He, respectively.

Plots of the Q-dependent data sets are shown in Figs. 4.11 – 4.20. The lines shown on the

plots are from a linear fit to each data set. NSLS crystals 1 and 18 have both sets of data from the

different temperatures on the same plot.
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Table 4.10: 3He Values Derived From Q-dependent Measurements

Measurement 〈u2〉 [Å2]
√

3〈u2〉/r ΘM [K]
NSLS 1A 0.1219± 0.0066 0.2011 114.2± 4.9
NSLS 1B 0.1155± 0.0023 0.1957 117.1± 1.9
NSLS 3 0.1135± 0.0022 0.1938 113.6± 1.9

NSLS 4A 0.1143± 0.0011 0.1947 121.1± 0.9
NSLS 4B 0.1150± 0.0015 0.1954 120.5± 1.3
NSLS 12 0.1196± 0.0026 0.1973 115.0± 2.0
NSLS 13 0.1291± 0.0041 0.2023 104.8± 2.7
NSLS 15 0.1343± 0.0027 0.2040 99.3± 1.7
APS 5 0.1302± 0.0058 0.2023 103.0± 3.8
APS 12 0.1158± 0.0022 0.1957 118.2± 1.8

Table 4.11: 4He Values Derived From Q-dependent Measurements

Measurement 〈u2〉 [Å2]
√

3〈u2〉/r ΘM [K]
NSLS 16 0.0999± 0.0027 0.1855 110.7± 2.3

NSLS 18A 0.1125± 0.0028 0.1902 93.2± 1.9
NSLS 18B 0.1026± 0.0017 0.1817 97.5± 1.3
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Table 4.12: 3He Q-dependent Measurement Conditions Table

Measurement Structure T [K] V [cm3]
NSLS 1A hcp 17.37 11.568
NSLS 1B hcp 15.86 11.566
NSLS 3 hcp 11.52 11.602
NSLS 4 fcc 18.13 11.578
NSLS 12 hcp 16.81 11.898
NSLS 13 hcp 14.23 12.365
NSLS 15 hcp 12.54 12.817
APS 5 hcp 13.30 12.526
APS 12 hcp 16.90 11.607

Table 4.13: 4He Q-dependent Measurement Conditions Table

Measurement Structure T [K] V [cm3]
NSLS 16 fcc 20.25 10.951

NSLS 18A hcp 14.23 12.120
NSLS 18B hcp 12.00 12.129
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Figure 4.11: NSLS crystal 1 Q-dependent measurements. The crystal is hcp 3He. The conditions
for measurement A are a molar volume of 11.568 cm3 and a temperature of 17.37 K. The conditions
for measurement B are a molar volume of 11.566 cm3 and a temperature of 15.86 K.
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Figure 4.12: NSLS crystal 3 Q-dependent measurement. The crystal is hcp 3He, while the conditions
are a molar volume of 11.602 cm3 and a temperature of 11.52 K.

83



1

10

100

1000

0 10 20 30 40 50 60

In
te

ns
ity

 [a
rb

. u
ni

ts
]

Q2 [Å−2]

Set A
Set B

Figure 4.13: NSLS crystal 4 Q-dependent measurements. The crystal is fcc 3He, while the conditions
are a molar volume of 11.578 cm3 and a temperature of 18.13 K.
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Figure 4.14: NSLS crystal 12 Q-dependent measurement. The crystal is hcp 3He, while the condi-
tions are a molar volume of 11.898 cm3 and a temperature of 16.81 K.
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Figure 4.15: NSLS crystal 13 Q-dependent measurement. The crystal is hcp 3He, while the condi-
tions are a molar volume of 12.365 cm3 and a temperature of 14.23 K.
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Figure 4.16: NSLS crystal 15 Q-dependent measurement. The crystal is hcp 3He, while the condi-
tions are a molar volume of 12.817 cm3 and a temperature of 12.54 K.
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Figure 4.17: NSLS crystal 16 Q-dependent measurement. The crystal is fcc 4He, while the condi-
tions are a molar volume of 10.951 cm3 and a temperature of 20.25 K.
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Figure 4.18: NSLS crystal 18 Q-dependent measurements. The crystal is hcp 4He. The conditions
for measurement A are a molar volume of 12.120 cm3 and a temperature of 14.23 K. The conditions
for measurement B are a molar volume of 12.129 cm3 and a temperature of 12.00 K.
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Figure 4.19: APS crystal 5 Q-dependent measurement. The crystal is hcp 3He, while the conditions
are a molar volume of 12.526 cm3 and a temperature of 13.30 K.
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Figure 4.20: APS crystal 12 Q-dependent measurement. The crystal is hcp 3He, while the conditions
are a molar volume of 11.607 cm3 and a temperature of 16.90 K.

91



One standard way to present the 〈u2〉 data is through the use of equivalent Debye temperatures.

This practice comes from the tradition of expressing the heat capacity of materials in terms of the

Debye temperature. This is a way to compare the measured values to the Debye model. It is also

convenient since measured CV and 〈u2〉 values can span several several orders of magnitude over a

sufficient temperature range, while the Debye temperatures do not vary too much.

The method of determination of the Debye temperature was shown in Sec. 2.2.2, where

〈u2〉T =

(
3h̄2

mkB

)
1
x2

[
Φ(x) +

x

4

]
and x ≡ ΘM

T
, (4.23)

with Φ(x) being the Debye integral. If a value of 〈u2〉 is known for a given temperature T , a value

of x can be found. The values of m for both 3He and 4He are in Appendix D.3. Finding a value

of x is not easy due to the Debye integral, and in past years tables of values for the right side of

the first equation (excluding the constant) were used [8]. In this day of powerful computers, it is

much easier to solve for x numerically with the use of a computer program. The values presented

here were generated by a data analysis program, written in the C programming language. Once

the value of x has been found, multiplication of it with T gives the Debye temperature, ΘM .

The resulting Debye temperatures for the measurements are given in tables 4.10 and 4.11.

They are plotted logarithmically versus the molar volume in Figs. 4.21 and 4.22, although the data

points have not been corrected for having been taken at different temperatures.

4.5.2 T -Dependent Data

T -dependent Debye-Waller data are collected using only one reflection, where rocking curves are

taken at different temperatures. Each set of data produces values of d〈u2〉/dT for the temperature

range of the measurements. Values of 〈u2〉 from Q-dependent measurements can be used to represent

a set of data as absolute 〈u2〉 values, instead of relative values.

The temperature derivative of 〈u2〉 is found by means of

d

dT
〈u2〉 = − 1

Q2

d

dT
ln(I) , (4.24)

where Q is that of the reflection used for the measurements. Since experimental measurements
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Figure 4.21: Natural logarithm of the Debye temperature versus natural logarithm of the molar
volume for both 3He and 4He, with all the measurements taken at various temperatures. Fig 4.22
is an expanded plot of the cluster of 3He data points.
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Figure 4.22: Expanded scale plot of natural logarithm of the Debye temperature versus natural
logarithm of the molar volume for 3He. The measurements were taken at various temperatures.
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involve finite temperature steps, the actual formula used for analyzing the data is

∆〈u2〉
∆T

= − 1
Q2

(
∆ln(I)

∆T

)
. (4.25)

This is fine as long as ∆T is small and the relationship between T and ln(I) is relatively smooth,

which is the case for the data in this thesis.

The following paragraphs discuss the problem encountered when taking T -dependent measure-

ments with the setup described in this thesis; internally-consistent Q-dependent measurements are

the more reliable route to reliable temperature-dependent 〈u2〉 values. The best way to check the

reliability of T -dependent measurements is to take multiple identical measurements and compare

them.

Ideally, constant volume should be maintained so the measurements would be for a constant

molar volume (if vacancies don’t occur in great numbers). A constant volume was expected for

the measurements, but unfortunately the data were not taken under this condition. A solid helium

plug forms in the fill line. Since frozen helium is rather soft and does not make a very consistent

plug, it will sometimes move after a temperature change, and sometimes it will not. This was seen

in measurements of the lattice parameters when looking for vacancies, where the lattice parameters

would jump in value every few temperature steps. So, the data presented have a caveat that they

were taken with neither constant volume or constant pressure.

Another problem with this type of data is that the crystal is unstable during temperature

changes. The fraction of the single crystal under study in the beam can change during the ramping

up or down in temperature. These temperature changes can also cause single crystals to merge

with others. These effects are discussed in Appendix G.7.5.

The T -dependent data for hcp 3He were taken using the (3 0 0) peak, with the molar volume

near 11.60 cm3; Fig. 4.23 is a plot of these data. The T -dependent data for hcp 4He were taken

using the (2 1 3̄) peak, with the molar volume near 12.12 cm3; Fig. 4.24 is a plot of these data.

Values for d〈u2〉/dT are found by applying Eq. 4.25 to both sets of data. Intensity measure-

ments made within 0.02 K of each other are combined into an average value in order to simplify

the calculations. The results of this analysis are plotted in Fig. 4.25.

T -dependent data can be used to calculate ∆〈u2〉 using Eq. 4.25, where both sides are multi-
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plied by ∆T , leaving

∆〈u2〉 = − 1
Q2

∆ln(I) . (4.26)

If a set of Q-dependent measurements was taken at the same molar volume as the T -dependent

measurements, and if the measurement temperature of the former matches any of the measurement

temperatures of the latter, the T -dependent measurements can be converted into 〈u2〉 values. This is

done by merely adding or subtracting ∆〈u2〉 from the 〈u2〉 value found from the set of Q-dependent

measurements. Once 〈u2〉 values are calculated, ΘM values can be calculated as described in

Sec. 4.5.1.

Both 〈u2〉 and ΘM values are computed for both sets of data. Intensity measurements made

within 0.02 K of each other are combined into an average value in order to simplify the calculations.

Errors for ∆〈u2〉 are hard to estimate, since two independent identical measurements would have

had to been taken for each data set. Errors for the derived 〈u2〉 values are a combination of the

error from the reference Q-dependent 〈u2〉 value as well as from the ∆〈u2〉; also, the further the

derived 〈u2〉 is from the reference 〈u2〉, the larger the error becomes.

For the crystal 3 data, since no T -dependent measurement was made at the same temperature

as the 11.52 K Q-dependent measurement, a value was interpolated from a linear fit to the T -

dependent data; this interpolation was for only a 0.4 K difference. A graph of the resulting 〈u2〉
values for crystal 3 is in Fig. 4.26, while a similar graph for the Debye temperatures is in Fig. 4.27.

For the crystal 18 data, the 〈u2〉 value from the 12.00 K Q-dependent measurement was used

with the 12.00 K T -dependent measurement. A graph of the resulting 〈u2〉 values for crystal 18 is

in Fig. 4.28, where the experimental 14.23 K value is shown for comparison; a similar graph for the

Debye temperatures is in Fig. 4.29. Error bars for the two T -dependent values near the 14.23 K

Q-dependent value are from the 12.00 K Q-dependent reference value, and is a minimum error for

these two values. Comparing the 14.23 K Q-dependent value to the T -dependent values, they agree

within the errors.
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Figure 4.23: NSLS crystal 3 T -dependent measurement. The crystal is hcp 3He and the (3 0 0)
peak was used, with the the molar volume being 11.60 cm3.
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Figure 4.24: NSLS crystal 18 T -dependent measurement. The crystal is hcp 4He and the (2 1 3̄)
peak was used, with the molar volume being 12.12 cm3. The jog near 13.5 K occurred when the
temperature controller’s heater range was changed.
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Figure 4.25: Calculated d〈u2〉/dT values for NSLS crystals 3 and 18. crystal 3 is hcp 3He, with
a molar volume of 11.60 cm3. Crystal 18 is hcp 4He, with a molar volume of 12.12 cm3. The
downward spike near 13.5 K for crystal 18 occurred when the temperature controller’s heater range
was changed.

99



0.112

0.114

0.116

0.118

0.120

0.122

0.124

11 12 13 14 15 16 17

<
u2 >

 [Å
2 ]

T [K]

T−dependent value
Q−dependent value

Figure 4.26: NSLS crystal 3 derived 〈u2〉 values. The crystal is hcp 3He and the (3 0 0) peak was
used, with the molar volume being 11.60 cm3. The T -dependent values are based on a linear
interpolation to the 11.52 K Q-dependent value, with errors somewhat larger that that of the
Q-dependent measurement itself.
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Figure 4.27: NSLS crystal 3 derived ΘM values. The crystal is hcp 3He and the (3 0 0) peak was
used, with the molar volume being 11.60 cm3. The T -dependent values are based on a linear
interpolation to the 11.52 K Q-dependent value, with errors somewhat larger that that of the
Q-dependent measurement itself.
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Figure 4.28: NSLS crystal 18 derived 〈u2〉 values. The crystal is hcp 4He and the (2 1 3̄) peak
was used, with the molar volume being 12.12 cm3. The T -dependent values are based on the
12.00 K Q-dependent value. The error bars for the two highest temperature T -dependent values
are those of the 12.00 K Q-dependent measurement, and represent a minimum error value for each.
The 14.23 K Q-dependent measurement agrees with the T -dependent measurments, within the
respective estimated errors.
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Figure 4.29: NSLS crystal 18 derived ΘM values. The crystal is hcp 4He and the (2 1 3̄) peak
was used, with the molar volume being 12.12 cm3. The T -dependent values are based on the
12.00 K Q-dependent value. The error bars for the two highest temperature T -dependent values
are those of the 12.00 K Q-dependent measurement, and represent a minimum error value for each.
The 14.23 K Q-dependent measurement agrees with the T -dependent measurments, within the
respective estimated errors.
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Chapter 5

Comparisons and Discussion

5.1 Previous Q-Dependent Debye-Waller Measurements

The only previous measurements of this type were done with 4He, so no comparisons with previous

data are possible for 3He. There have been three separate measurements done for 4He.

The first measurement for 4He was with neutrons by Stassis et al. [1]. The method of using

neutrons to find the Debye-Waller factor is essentially the same as the method of using X-rays [2].

This method could not be attempted for 3He, since 3He has an extremely high absorption rate for

neutrons; not only would the scattered flux be reduced, but the sample itself would be altered as

the 3He would turn into 1H, 3H, and thermal energy. The other two measurements for 4He were

with X-rays by Venkataraman [3], and Burns and Isaacs [4].

The data from these sources are summarized in Table 5.1, where the equivalent Debye temper-

atures were calculated either for the first time or were redone using a computer program written in

the C language. None of these measurements were taken where both molar volume and temperature

conditions were similar to that of a measurement in this thesis.

5.2 Previous T -Dependent Debye-Waller Measurements

The only known previous measurement of this type is on fcc 4He, by Venkataraman [3]. In that

thesis, (∂〈u2〉/∂T )V was calculated from the data, and the two data sets of this type are at much

different molar volumes than data in this thesis.

5.3 Other Types of Data

A few other types of data can be considered. Heat capacity and phonon dispersion curve mea-

surements can be used to derive a value for 〈u2〉, although these values are indirect since they
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Table 5.1: Previous Debye-Waller Measurements of 4He
Structure V [cm3] T [K] 〈u2〉 [Å2] ΘM [K]

hcp 12.06 5.8 0.09322a 99.68± 0.50
hcp 15.72 5.8 0.1722a 56.45± 0.50
fcc 10.14 26.94 0.0887± 0.0038b 130.6± 3.5
fcc 10.24 25.94 0.0843± 0.0018b 133.9± 2.1
fcc 10.46 23.84 0.1027± 0.0062b 113.7± 4.9
fcc 10.51 23.01 0.0988± 0.0007b 115.5± 0.6
fcc 10.37 24.40 0.0823± 0.0040b 134.4± 4.9
hcp 20.9 0.7 0.307± 0.013c 29.8± 1.3

a Neutron measurement by Stassis et al. [1].
b X-ray measurement by Venkataraman [3].
c X-ray measurement by Burns and Isaacs [4].

depend upon a model. The effect the mass of the atom for the two helium isotopes has on the

equivalent Debye temperature can be compared to that which is predicted by a simple theoretical

analysis. As a way of looking for anharmonicities, peaks can be searched for at forbidden locations

(almost-forbidden reflections).

5.3.1 Heat Capacity Measurements

There have been several measurements of the heat capacity of both 3He and 4He, which also gave

Debye temperatures [5, 6, 7, 8, 9]. From these heat capacity measurements, ΘCV
was calculated.

These measurements were taken over a wide temperature range, creating curves that go towards

T = 0, giving an approximate value of ΘCV
(T = 0).

For two sets of 4He measurements [8, 9], enough such values at different molar volumes were

taken to allow a fit to a Grüneisen parameter at T = 0, γCV
(0). The expression found for the

combined data is

γCV
(0) = 0.8114 + 0.09690 V 26 ≤ V [cm3] ≤ 13.7 . (5.1)

The temperature dependence of γCV
(T ) at low temperatures is very slight, with it increasing as

the molar volume increases. For V = 13 cm3 and T = 10 K (conditions close to those of the
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samples in this thesis), γCV
(10 K)/γCV

(0) ≈ 1.02 [8]. There are not enough measurements for 3He

in order to get a fit for γCV
(0), although it has been observed that the few 3He measurements

that exist conform to Eq. 5.1 [8]. Because of this, for this thesis, the Grüneisen parameter is

approximated as being temperature independent, γCV
, and being the same for both 3He and 4He,

using Eq. 5.1 as its value. The molar volumes in this thesis are slightly smaller than those allowed

by this fit, but this fit is the only one available, so it’s used. From Eqs. 2.68 and 2.70 which apply

to harmonic models, ΘCV
and ΘM correspond to different low-order moments of the one-phonon

frequency spectrum, ωD(−3) and ωD(−1) respectively. Nevertheless, it is assumed here that γCV

(as measured from ΘCV
) will be the same as γM , which will be used in the rest of this thesis. This

Grüneisen parameter can be integrated to give a relationship between ln(ΘM ) and ln(V ), namely

ln(ΘM ) = −0.8114 ln(V )− 0.09690V + constant ΘM [K], V [cm3] . (5.2)

This relationship can be used to scale measurements that are at different molar volumes, allowing

direct temperature comparisons of data.

5.3.2 Phonon Dispersion Measurements

There are several measurements of the phonon dispersion relations along different directions for 4He

using inelastic neutron scattering [10, 11, 12, 13, 14, 15]. From these data, a one-phonon density

of states can be generated, using a fit to a Born-von Kármán model. This density of states can

be used to calculate a value of 〈u2〉, but such a procedure is indirect and neglects the considerable

multi-phonon processes present in helium crystals. Values calculated this way do not agree with

direct experiment or PIMC computations.

In order to include some multi-phonon processes, it is also possible to calculate M values from

the heat capacity data using an ACB sum rule [16], which takes into account single phonon processes

plus only multiphonon processes that have a single phonon as some intermediate stage [12]. This

view has been applied to the analysis of phonon intensity data [11], where it predicts a nonlinear

ln(I) versus Q2 relation, in apparent agreement with some of the neutron inelastic data. However,

this is not seen in any of the experimental Debye-Waller measurements, including the present ones,

which average over all phonon excitations.
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There have also been measurements for 3He and 4He using inelastic X-ray scattering [17]. These

x-ray studies however concentrated on specific branches of the phonon spectra and are not sufficient

to be used for Born-von Kármán fitting. Analysis of the inelastic x-ray data using observed lifetimes

and ACB concepts for excitation intensities was consistent with strong multiphonon excitations in

the extended zone for reduced Q values between 1 and 2.

5.3.3 Isotopic Effects

Because of the difference in mass for the two helium isotopes, corresponding phonons in both

isotopic crystals (of the same molar volume) will have different vibrational frequencies. For a

harmonic crystal, the phonon frequency is dependent upon mass as m−1/2, giving the harmonic
3He-4He frequency ratio as

√
4/3 ≈ 1.155. Since the Debye temperature is defined as

ΘD ≡ h̄ωD

kB

, (5.3)

it scales with mass as the Debye frequency does. The equivalent Debye temperatures at T = 0 for

a general harmonic solid also has the same mass dependence.

Several sources give experimental values for the 3He-4He ratio. Sample and Swenson [6] give

a value of 1.18, using heat capacity data in the hcp phase, where the low temperature limit of

the Debye temperature, ΘCV
(T → 0), is used; the fact this corresponds to the moment ωD(−3)

needs to be considered. Slusher and Surko [18] give a value of 1.17± 0.01 for the transverse optical

phonons near K = 0, using Raman scattering. Seyfert et al. [17] give an average value of 1.11±0.05

for the longitudinal phonons along the < 1 0 0> direction, using inelastic X-ray scattering. A more

complete account of experimental findings is given by Seyfert [19].

5.3.4 Almost-Forbidden Reflections

One way to look for anharmonicities is by looking for peaks at the locations of the forbidden

peaks of a crystal with a basis. For helium, this means an hcp crystal. These peaks at forbidden

locations are called “almost-forbidden” reflections. According to estimates, almost-forbidden peaks

should be visible in hcp helium, although they should be very weak [20]. For hcp crystals, the

condition for forbidden reflections can be written as when h = k + 3n for any integer n and ` is
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odd; anharmonicities would cause almost-forbidden peaks to appear at those values, except for the

case of n = 0, where the reflections are still forbidden [21]. The (3 0 1) peak is the reflection with

the lowest Q value for helium, but since allowed peaks at comparable Q values were very weak,

it was impossible to find this reflection. The lower Q forbidden peaks (0 0 1), (0 0 3), and (1 1 1)

were searched for at the Advanced Photon Source and no peaks were found, while at the National

Synchrotron Light Source, a peak was found at (1 1 1) position. The (1 1 1) peak was most likely

due to either multiple reflections or stacking faults; the crystal was not rotated about the reflection

to see if the multiple reflection possibility could be ruled out. Burns and Isaacs [4] also saw peaks

at the (0 0 1) and (0 0 3) reflections, which were attributed to stacking faults or strains caused by

passing through a bcc-hcp transition.

5.4 Computations

Values of 〈u2〉 can be computed for He through the use of path-integral Monte Carlo [22]. Ceper-

ley did computations that matched measurement conditions for data in this thesis and also for

Venkataraman [3]. It was initially found that these computations disagreed somewhat with experi-

ment; this was found to be due to a need for larger simulation samples. This led to work by Draeger

and Ceperley [23], where a way of extrapolating computational values to samples of infinite size

was found, and more computations were made to match measurements in this thesis.

The computations exhibit a finite size scaling consistent with a crossover between the quantum

and classical limits, which are N−2/3 and N−1/3 respectively, where N is the size of the sample used

for a computation. In order to find a value for when N = ∞, several computations with different

N were made and a fit was made to a crossover model, which predicted the asypmtotic limit. For

computations at conditions corresponding to experimental measurements presented in this thesis,

the resulting asymptotic values agree quite well with experimental measurements for all but one

case.

From several sets of computations, 〈u2〉 values were able to be fit to a model of the form

〈u2〉 = a + b T 3 , (5.4)

where a and b are parameters. This T 3 temperature dependence is different from the T 2 temperature
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dependence expected for a harmonic crystal. If a curve of this type is converted into a corresponding

ΘM curve, this new curve has a maximum just above T = 0. This maximum is unexpected in a

harmonic model, because the usual low-temperature series expansions for the respective Debye

equivalent temperatures show monotonic behavior. This maximum implies that either the fit does

not detect any lower-order terms in T or this is caused by the anharmonic nature of helium.

For the case of hcp crystals, the computations were done using a lattice where the c/a ratio is

set to be ideal. As discussed before, this is very close to the observed c/a ratio.

Of the computations made, there is one for fcc 3He and fcc 4He, both at V = 10.98 cm3 and

T = 17.78 K. If the 〈u2〉 values are converted to equivalent Debye temperatures, they give a value

of 1.183 ± 0.004 for the 3He-4He frequency ratio (as discussed in Sec. 5.3.3). This is not too far

from the ideal value of
√

4/3 ≈ 1.155. Since this type of comparison for the PIMC values was made

for only one pair of available computations, the true accuracy of this value is not well defined.

The computations for fcc show a small non-Gaussian shape for the atomic displacement (coming

from Eq. 2.17), being of the form

ln (I/Ic) = −2M ′ ≡ −〈u2〉Q2 − ξ Q4 , (5.5)

where I is the measured intensity, Ic is a constant, M ′ is the first-order corrected Debye-Waller

factor, and ξ is a variable composed of 〈u2〉2 and 〈u4〉. The correction comes in the form of a non-

zero ξ, making the Debye-Waller factor a quadratic expression in Q2. I/Ic values were calculated

for < 1 0 0> and < 1 1 1> directions, with the non-zero ξ being evident when these values are

plotted as Q−2 ln(I/Ic) versus Q2. Both sets of computations end up being linear with differing

slopes (which correspond to differing ξ values). The significance of this is that PIMC predicts

the non-Gaussian shape of the atomic displacement (due to the non-zero values of ξ), as well as

predicting an anisotropy for the Debye-Waller factor (due to the two reciprocal directions having

differing values of ξ).

Computations were done matching six measurements. These PIMC calculated 〈u2〉 values,

with equivalent Debye temperatures calculated by Mathematica, are given in Table 5.2, followed

by the corresponding experimental values for comparison. From this table, it can be seen that each

set of PIMC and experimental values agree within the respective stated uncertainties.

Three sets of computations were also done at the same molar volume of a measurement at a
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Table 5.2: Results from PIMC Computations and Their Experimental Counterparts
No.a Structure Isotope V [cm3] T [K] 〈u2〉 [Å2] ΘM [K]

1 fcc 3 11.54 17.78 0.1141± 0.0040 120.9± 3.4
2 hcp 3 11.90 16.84 0.1184± 0.0024 116.0± 1.9
3 hcp 3 12.81 12.31 0.1326± 0.0019 100.0± 1.2
4 fcc 4 10.98 20.00 0.0977± 0.0039 112.3± 3.4
5 hcp 4 12.12 14.55 0.1117± 0.0013 94.1± 0.9
6 hcp 4 12.12 11.85 0.1024± 0.0013 97.4± 1.1

No. Measurement Label V [cm3] T [K] 〈u2〉 [Å2] ΘM [K]
NSLS 4A 0.1143± 0.0011 121.1± 0.9

1
NSLS 4B

11.578 18.13
0.1150± 0.0015 120.5± 1.3

2 NSLS 12 11.898 16.81 0.1196± 0.0026 115.0± 2.0
3 NSLS 15 12.817 12.54 0.1343± 0.0027 99.3± 1.7
4 NSLS 16 10.951 20.25 0.0999± 0.0027 110.7± 2.3
5 NSLS 18A 12.120 14.23 0.1125± 0.0028 93.2± 1.9
6 NSLS 18B 12.129 12.00 0.1026± 0.0017 97.5± 1.3

a PIMC calculations done by Draeger and Ceperley [23].

number of different temperatures, corresponding to NSLS crystals 4, 16, and 18. The conditions

for most of the values are such that, experimentally, the crystal would be in the hcp phase. How-

ever, two of these sets of computations are done for an fcc crystal, to see a trend up to the two

experimental fcc values. The crystal 16 set has a large number of values, done to show that the

temperature dependence of 〈u2〉 conforms to Eq. 5.4.

The graphs of the 〈u2〉 values for NSLS crystals 4, 16, and 18, as well as plots of their fits to

a a + bT 3 model, are shown in Figs. 5.1, 5.2, and 5.4 respectively. On these graphs, the associated

experimental values are shown for comparison, and they agree with the nearest PIMC value within

error bars.

NSLS crystal 16 has two sets of fits, the first for the full set of data and the second for a

partial set of data, where the two outlying points were removed from the fit. If the partial fit is

studied, it goes almost perfectly through all the included points; the divergence of the remaining

two points is not understood, but these two points are within the stated uncertainty of the other

points. Because of the near perfect fit to the majority of the PIMC values, the partial fit will be

considered the better fit for NSLS crystal 16.
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Figure 5.1: Comparison of 〈u2〉 values as calculated by PIMC for fcc 3He at V = 11.54 cm3 [23]
to the measured value from NSLS crystal 4, which has a molar volume of 11.578 cm3. The curve
corresponds to a fit of the PIMC values to a a + bT 3 model. The computations below 18.0 K
are done at a temperature corresponding to an hcp crystal in reality for this molar volume. The
experimental values and their corresponding PIMC value agree quite well within error bars.
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Figure 5.2: Comparison of 〈u2〉 values as calculated by PIMC for fcc 4He at V = 10.98 cm3 [23] to
the measured value from NSLS crystal 16, which has a molar volume of 10.951 cm3. The curves
corresponds to fits of the PIMC values to a a + bT 3 model, with one fit being made to the full set
of values and the other being made to a partial set of values (missing the two outlying points). The
computations below 16.0 K are done at a temperature corresponding to an hcp crystal in reality
for this molar volume. The experimental value and its corresponding PIMC value agree well within
error bars.
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Figure 5.3: Comparison of ΘM values as calculated by PIMC for fcc 4He at V = 10.98 cm3 [23] to
the measured value from NSLS crystal 16, which has a molar volume of 10.951 cm3. The values for
the curve of the PIMC fit are values converted into Debye temperatures from a partial 〈u2〉 fit to
a a + bT 3 model. The computations below 16.0 K are done at a temperature corresponding to an
hcp crystal in reality for this molar volume. The experimental value and its corresponding PIMC
value agree well within error bars.
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Figure 5.4: Comparison of 〈u2〉 values as calculated by PIMC for hcp 4He at V = 12.119 cm3 [23]
to the measured values from NSLS crystal 18, which has molar volumes of 12.129 cm3 for 12.00 K
and 12.120 cm3 for 14.23 K. The curve corresponds to a fit of the PIMC values to a a+ bT 3 model.
The experimental values and their corresponding PIMC values agree quite well within error bars.
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If uncertainties are associated with the fit curves for the 〈u2〉 plots similar to the ones for the

discrete PIMC values, the fits agree with the experimental values within the error bars. The partial

fit curve for crystal 16 agrees better with the experimental value than the full fit curve.

Because of the many 〈u2〉 computations done for NSLS crystal 16, a graph of the resulting

Debye temperatures is given in Fig. 5.3. The partial fit for the 〈u2〉 values was used to generate a

ΘM curve. This curve rises briefly then falls, as a function of temperature, and is used in Sec. 5.5

for comparison to all direct measurements, when they reduced to a single molar volume.

5.5 Comparisons

This section compares the values presented in this thesis with earlier measurements and extends

comparisons with computations. In order to compare ΘM values made at different temperatures

and molar volumes, they can be adjusted to a common molar volume using the Grüneisen parameter

presented in Eq. 5.2, so only a temperature dependence is left.

A graph of ΘM versus V , where the values of ΘM are calculated from all known direct measure-

ments of 〈u2〉, is in Fig. 5.5. The measurements are at different temperatures, so direct comparison

should not be made. A curve representing the predicted curvature of isothermal values for either

helium isotope, from the measured Grüneisen parameter, is shown; it is shown going through the

only two points taken at the same temperature, the ones by Stassis et al. [1].

The data are adjusted to common molar volume by use of the Grüneisen parameter, as de-

scribed earlier, resulting in a graph of ΘM versus T . It is worth noting that an analysis which

converts 〈u2〉 values to equivalent ΘM values is a highly sensitive way of displaying possible varia-

tions and trends in the direct data, so representing the data on a single graph can be illuminating.

The graph, using a molar volume of 11.50 cm3 as the reference, is shown in Fig. 5.6. This molar

volume is a rough median value for the measurements presented in this thesis. The PIMC com-

putational values shown are the six presented in Table 5.2. A curve for the 4He PIMC Debye

temperatures, derived from the partial PIMC fit to the NSLS crystal 16 〈u2〉 values as shown in

Fig. 5.2, is scaled to 11.50 cm3 and shown. This curve is shown for both comparison and the fact

that it shows the theoretical temperature dependence of the reduced values. There is an uncertainty

associated with the curve, which is not shown.

From looking at the graph at the PIMC curve and 4He measurements presented in this thesis,
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Figure 5.5: Natural logarithm of the Debye temperature versus natural logarithm of the molar
volume for all known measurements of ΘM for 3He and 4He. These data were taken at various
temperatures, so direct comparison of them should not be done. Error bars are not shown, making
the symbols clearer. The solid symbols represent 3He values, while the open symbols represent 4He
values. The SK&K data are by Stassis et al. [1], the V data are by Venkataraman [3], and the B&I
datum is by Burns and Isaacs [4]. The curve for the Grüneisen parameter, γM , is plotted to show
the predicted relationship between the data if they were all taken at the same temperature.
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Figure 5.6: Debye temperature versus temperature of all experimental values, scaled to a molar
volume of 11.50 cm3 using the Grüneisen parameter. This molar volume is a rough median value
for the measurements. The PIMC computational values shown are the six presented in Table 5.2.
The PIMC fit for 4He is the same as the one shown in Fig. 5.3, only scaled. As a guide to the phase
of the experimental data points, those above 17.5 K correspond to fcc crystals, while those below
correspond to hcp crystals.
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the PIMC curve seems to have an offset making it slightly higher than the measurements. The

three 4He measurements decrease as a function of temperature, agreeing with the temperature

dependence of the same region of the PIMC curve. If uncertainties similar to the ones shown for

the PIMC values in Fig. 5.3 are applied to the PIMC curve, the curve agrees with the three 4He

measurements within the error bars, with the NSLS crystal 18 value at 14.23 K just barely agreeing.

If the ten 3He measurements are considered, they have a decreasing temperature dependence,

except for the NSLS crystal 3 value at 11.52 K and the two NSLS crystal 4 values at 18.13 K. This

temperature dependence is similar to that of the PIMC curve. The crystal 3 value does not seem

to fit with the rest very well, and is probably the most unreliable of the measurements presented.

The Burns and Isaacs datum does not agree very well with the PIMC curve or the neighboring

experimental values. One possible explanation is that its molar volume is twice that of the reference

volume, making the correction Eq. 5.2 applied to it the largest, although the molar volume is well

in the range of the Grüneisen parameter used. Another is that the experiment, using a dilution

refrigerator in a synchrotron beam, proved to be a physically difficult one to do [24].

If uncertainties similar to the ones shown for the PIMC values in Fig. 5.3 are applied to the

PIMC curve, the data from Stassis et al. agree within error bars. A simple comparison of their

measurements to the current measurements shows the same decreasing temperature dependence as

before, although the PIMC curve in this region predicts an increasing temperature dependence.

If uncertainties are again applied to the PIMC curve, two of Venkataraman’s five values agree

with the curve, being those at 23.01 K and 24.40 K. The experiments that generated her data were

the first successful work with essentially the same system used in this thesis. However, the growth

of high quality samples and the methods of taking the data were not as developed at that time.

The T -dependent data can also be reduced to a molar volume of 11.50 cm3, using the same

Grüneisen parameter as before. This has been done for both sets of data, with the result that they

both have a decreasing temperature dependence, which is in agreement with the corresponding

regions of the PIMC curve.
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5.6 Discussion

5.6.1 Temperature Dependence of the Debye Temperature

From Fig. 5.6, taking into account the preceding discussion of data inconsistencies, the tempera-

ture dependence of the measured Debye temperatures seems to be such that they decrease as the

temperature increases, for both 3He and 4He. This is also evident in Tables 4.10–4.13, where each

ΘM value of the NSLS measurement sets 1A&B and 18A&B are at almost identical molar volumes

and at different temperatures, with the ΘM decreasing with temperature.

For a quasi-harmonic fcc crystal and a continuous n, the Debye moments of the distribution,

ωD(n), compose a continuous curve that has a positive second derivative, with n at the minimum

being between 0 and 2 [25]. From Eq. 2.68, it is seen that ωD(−1) determines the low temperature

limit of ΘM , while ωD(−2) determines the high limit. For this quasi-harmonic fcc crystal, ωD(−2)

has a larger value than ωD(−1), making the high temperature limit of ΘM larger than the low

temperature limit. Also, this temperature dependence should be monotonic, with no local maxima

or minima.

For a mildly anharmonic solid such as fcc neon, where the renormalized frequencies can be

represented as a frequency shift from a quasi-harmonic model, the low temperature limit of ΘM is

smaller than the high temperature limit [26]. Also, the hcp solid with the closest c/a ratio to ideal

is magnesium, and even its limiting cases for ΘM have the same relationship as neon [27, 28]. The

Debye moments used for neon and magnesium are derived from the one-phonon density of states

obtained from a Born-von Kármán fit to measured phonon dispersion.

The behavior of the measured helium ΘM values seems to run counter to this temperature

dependence, at least locally. It is possible that the temperature dependence of ΘM reverses itself at

some point, increasing with temperature. However, due to the rather steep drop-off of ΘM in the

data measured, it is doubtful. Even if it did, it would not have approached its limit monotonically,

still suggesting anharmonic effects. Since helium crystals of large molar volume melt at such a low

temperature, the high temperature limit can never be measured. Increasing the pressure on the

crystal in order to increase the melting temperature would diminish the anharmonic effects present

in the helium, changing that which is interesting.

This backwards temperature dependence of ΘM shown in this thesis is confirmed by PIMC
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computations, and some evidence of this was seen by Venkataraman [3]. The conclusion one can

draw from the reversed temperature dependence of ΘM is that close-packed helium is so anharmonic

that the one-phonon viewpoint of the vibrational excitations does not seem to be supported, causing

this reversal. Currently, no quantitative values for multi-phonon contributions have been produced.

Further theoretical and experimental work will be required for that.

Whether there is a local maximum to this temperature dependence at a low temperature,

before ΘM drops with temperature is unclear from the measured data. As seen on Fig. 5.6, the

PIMC curve based upon the fit Eq. 5.4 predicts a maximum near 9 K. That PIMC fit to the

computed 〈u2〉 values was an empirical one, and few low temperature points were used in the fit,

so this maximum might not exist if enough computations were made.

5.6.2 Mass-Scaling of Phonon Frequencies

The ideal mass-scaling ratio for the Debye temperature at T = 0 is
√

4/3. The temperature depen-

dence of the Debye temperature has a nontrivial dependence on mass due to the Debye integral, so

at a finite temperature, a direct comparison is not strictly correct. Since the temperatures of the

measurements are low, a qualitative comparison is made here.

If Fig. 5.6 is considered, the 3He measurement values are roughly
√

4/3 times the 4He mea-

surement values. This makes the ideal mass-scaling factor reasonable for these data. However, the

values do not disagree with the non-ideal mass-scaling values measured by others (as discussed in

Sec. 5.3.3), since the error bars do not allow such a fine resolution.

5.6.3 Lindemann Ratio

One of the indicators used for determining the magnitude of the quantum nature of a crystal is the

Lindemann ratio,
√

3〈u2〉/r. The anharmonic nature of a crystal is directly linked to its quantum

nature. For the 3He measurements, this ratio ranged between 0.194 and 0.204, while for the 4He

measurements, it ranged between 0.182 and 0.190. Crystals with Lindemann ratios such as these are

considered as having a large quantum nature. Direct comparisons between the two isotopes aren’t

possible since no measurements occur at the same volume and temperature for both. The best

possible comparison is between NSLS 13 (3He) and NSLS 18A (4He), where both measurements

were made at 14.23 K and the respective molar volumes are 12.365 and 12.120 cm3. The resulting
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Lindemann ratios are 0.2023 and 0.1902, a 6.2 percent difference that comes from 3He having a

smaller mass.

5.6.4 Anisotropic Effects

The measured data for hcp crystals were used to look for anisotropic effects. Unfortunately, no

measurement had both pure a axis reflections and pure c axis reflections, which would have made

a comparison easier. What was done instead was compare the reflections that were most weighted

towards either axis. From these reflections, it was seen that the weighted reflections of one of the

axes seemed to scatter randomly about a linear fit (made through all the data points), instead of

all being on one side or the other. If there are any anisotropic effects in hcp He crystals (and there

are probably some), they are too small to be resolved by these measurements.

5.6.5 Non-Gaussian Behavior of the Atomic Displacement

The data were used to look for non-Gaussian behavior in the atomic displacement, as evident in the

modification of the Debye-Waller factor in Eq. 5.5, in an attempt to confirm the PIMC findings.

Unfortunately, the simple plot used for the PIMC computations does not work with measurements,

since I is measured, but not Ic. If a normal ln(I) versus Q2 plot of the data is considered, the

quadratic relation in Q2 would appear as a noticeable curvature within the scatter of the points.

However, this is not seen in the present data. It should be remembered that the data were analyzed

using the assumption of a calculated free-atom form factor, which is the most strongly Q-dependent

aspect of the data reduction.
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Chapter 6

Conclusion

Debye-Waller factors for both 3He and 4He have been measured using X-rays. Analysis of the data

provides values for the mean squared atomic deviation 〈u2〉. The ranges of molar volumes used for

investigating 3He and 4He crystals were 11.52–12.82 cm3 and 10.95–12.13 cm3, respectively. The

temperature ranges used were 11.5–18.2 K and 12.0–20.3 K, respectively. Data for both hcp and

fcc phases were obtained.

The measured 〈u2〉 values agree quite well with path integral Monte Carlo computational

values, provided those computations are extrapolated to infinite sample size.

Further analysis generates an equivalent Debye temperature, ΘM . From the PIMC 4He 〈u2〉
calculations, a fit was made, which was then used to generate a ΘM curve. This curve, which has

an maximum that may or may not actually exist, has a decreasing temperature dependence over

the range of the measurements, and it agrees with the three measured 4He values. The 3He ΘM

measurements have a similar decreasing temperature dependence, with the exception of three of

the ten values.

The 3He and the 4He measurements have roughly an ideal mass-scaling for the Debye temper-

atures of
√

4/3. Other techniques have been interpreted as showing possible slight deviations from
√

4/3, but such deviations may not be outside the respective experimental uncertainties.

Lindemann ratios measured for 3He ranged between 0.194 and 0.204, while for 4He they ranged

between 0.182 and 0.190. For a pair of measurements done at comparable molar volumes and the

same temperature, the Lindemann ratio for 3He was found to be 6.2 percent larger than that of
4He. The large values measured for the Lindemann ratios are consistent with the quantum nature

of helium.

A temperature dependence of ΘM was observed which is contrary to what is expected for an

fcc quasi-harmonic crystal. An instance of this was seen by Venkataraman, who was unsure if it was

real or due to an error. This inverted dependence is most likely due to the large anharmonic effects
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present in low density helium, where the multi-phonon processes present in the crystal are being

effectively ignored by the one-phonon model of the Debye temperature. Such contrary temperature

dependence is also shown by a PIMC fcc model.

A future area of research could be to further investigate the reversed temperature dependence of

the equivalent Debye temperature. Similar Debye-Waller measurements could be taken of helium

at higher pressures, where helium is more classical. The temperature dependence can then be

examined to see if it is reversed or not, where a higher temperature range of measurements can also

be made (due to the higher melting temperature of helium crystals). A different, yet similar, type

of measurement is to take Q-dependent Debye-Waller measurements of neon crystals, which have

never been made, since neon is less quantum and solidifies in a convenient temperature range.

An investigation into whether a maximum in the ΘM curve does indeed exist could be made.

This would require measurements made at temperatures lower than those available to the equipment

used for this thesis. Newer compression head refrigerators with better cooling power could be used,

as could a dilution refrigerator made for use in a goniometer. More PIMC calculations should be

done at these temperatures to see if the maximum was due to lack of enough data points.

Another possible experiment is a measurement of the Grüneisen parameter for ΘM for helium.

The Grüneisen parameter used in this thesis was the one measured for ΘCV
. This newly measured

γM could be compared to the existing γCV
to see if they agree. Since, in a one-phonon model, they

are responsive to different moments of the frequency distribution, a comparison can possibly be

used to better understand the underlying phonon excitations in quantum solid helium crystals.
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Appendix A

Absorption Characteristics

Attenuation by a material is governed by

I = I0 e−µx (A.1)

where I is the attenuated intensity, I0 is the initial intensity, µ is the linear absorption coefficient

for the material at a given energy, and x is the absorber’s thickness.

The values of the linear absorption coefficients for the materials used as attenuators are given

in Table A.1 for a photon energy of 16.00 keV. In the table, h is the thickness such that

I

I0
=

1
2

= e−µh . (A.2)
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Table A.1: Linear Absorption Coefficients
Photon Energy is 16.00 keV

Material µ[cm−1] h[cm]
He (at STP) 3.8× 10−5 1.8× 104

He (at 12 cm3/mol) 7.1× 10−2 9.8× 100

Be 4.85× 10−1 1.43× 100

Al 1.749× 101 3.963× 10−2

Mo 2.4055× 102 2.882× 10−3

Cu 5.6098× 102 1.236× 10−3

W. H. McMaster, N. Kerr Del Grande, J. H. Mallett, and J. H. Hubbell, Lawrence
Livermore National Laboratory Report UCRL-50174 Section II Revision I, 1969.
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Appendix B

General Crystal Properties

B.1 Crystal Lattices

These lattices are the bases of the crystal structures of He.

Assuming that the primitive cell vectors are a1, a2, and a3, the definition of the Euler angles

are

α ≡ ϑ23 , β ≡ ϑ31 , and γ ≡ ϑ12 where cos(ϑij) =
ai · aj

|ai||aj | .

B.1.1 Cubic

|a1| = |a2| = |a3| ≡ a α = β = γ = 90̊

Planar Spacing: dhk` =
a√

h2 + k2 + `2

Cell Volume: v = a3

B.1.2 Hexagonal

|a1| = |a2| ≡ a |a3| ≡ c α = β = 90̊ γ = 120̊

Planar Spacing:
1

d2
hk`

=
4
3

(
h2 + hk + k2

a2

)
+

`2

c2

Cell Volume: v =
√

3
2

a2c

129



B.2 Crystal Structures

To convert an atomic volume from below into a molar volume, use

V =

(
0.6022045

cm3

Å3

)
v V [cm3], v [Å3]

where V is molar volume and v is atomic volume.

B.2.1 fcc

The fcc structure is one of the forms of both 3He and 4He.

This structure is actually a true Bravais lattice, but it is conventional to represent it in terms

of a cubic lattice with a four atom basis, since the cubic lattice is much easier to deal with. Because

of this, the “forbidden” peaks in the structure factor are not actually forbidden, but simply not

there since the reciprocal lattice for fcc takes the form of a bcc lattice. If based on the cubic lattice,

the atoms are at (0, 0, 0), (1
2 , 1

2 , 0), (1
2 , 0, 1

2), and (0, 1
2 , 1

2).

Atomic Volume: v =
a3

4

Nearest Neighbor Distance: r =
a√
2

fcc Structure Factor:





hk` all odd or all even F 2 = 4f2

hk` mixed F 2 = 0
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B.2.2 hcp

The hcp structure is one of the forms of both 3He and 4He, and is the form that Be takes.

This structure is a simple hexagonal lattice with a two atom basis. The atoms are at (0, 0, 0)

and (2
3 , 1

3 , 1
2) within the unit cell.

Atomic Volume: v =
√

3
4

a2c

Ideal c/a Ratio: (c/a)ideal =
√

8/3 = 1.63299 . . .

Nearest Neighbor Distance: r =





a if c/a ≥ √
8/3

√
c2/4 + a2/3 if c/a <

√
8/3

hcp Structure Factor:





h + 2k = 3n ` even F 2 = 4f2

h + 2k = 3n± 1 ` odd F 2 = 3f2

h + 2k = 3n± 1 ` even F 2 = f2

h + 2k = 3n ` odd F 2 = 0

B.2.3 Wurtzite

The Wurtzite structure is the form that BeO takes.

This structure is a simple hexagonal lattice with a four atom basis, with two atoms being type

A and the other two being type B. Within the unit cell, the A atoms are at (0, 0, 0) and (2
3 , 1

3 , 1
2),

while the B atoms are at (0, 0, u) and (2
3 , 1

3 , 1
2 + u).

This structure can be thought of as two hcp structures, one A and the other B, which have

the same lattice parameters, and are superimposed on top of each other, except there is an offset

of uc along the c-axis. Accordingly, the structure factor of Wurtzite has similarities to that of hcp.

Wurtzite Structure Factor

(W ≡ f2
A + 2fAfB cos(2πu`) + f2

B):





h + 2k = 3n ` even F 2 = 4W

h + 2k = 3n± 1 ` odd F 2 = 3W

h + 2k = 3n± 1 ` even F 2 = W

h + 2k = 3n ` odd F 2 = 0
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Appendix C

Be and BeO

The structure of beryllium and beryllium oxide is important in order to understand the majority

of the background present. Table C.1 shows the structure and associated constants of both Be and

BeO. Tables C.2 an C.3 show the predicted 2θ values for the important reflections of Be and BeO.

Table C.1: Be and BeO crystal characteristics
Crystal Structure a [Å] c [Å] u

Be hcp 2.2856 3.5832
BeO Wurtzite 2.698 4.377 0.378

N. Schell, Ph.D. thesis, Ludwig-Maximilians-Universität, München, 1994.
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Table C.2: Be reflections
Photon Energy is 16.00 keV

hk` Q [Å−1] 2θ [deg.] hk` Q [Å−1] 2θ [deg.]
100 3.1743 22.576 104 7.6989 56.687
002 3.5070 24.979 203 8.2449 61.118
101 3.6264 25.844 210 8.3984 62.382
102 4.7303 33.919 211 8.5795 63.884
110 5.4981 39.637 114 8.9121 66.675
103 6.1441 44.528 212 9.1013 68.282
200 6.3486 46.094 105 9.3245 70.199
112 6.5213 47.424 204 9.4605 71.378
201 6.5863 47.926 300 9.5229 71.922
004 7.0140 51.256 213 9.9099 75.338
202 7.2529 53.135 302 10.148 77.480

Table C.3: BeO reflections
Photon Energy is 16.00 keV

hk` Q [Å−1] 2θ [deg.]
100 2.689 19.09
002 2.871 20.39
101 3.048 21.67
102 3.934 28.08
110 4.658 33.38
103 5.077 36.49
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Appendix D

He Properties

D.1 Form Factor

There are no measured data for the atomic form factor of helium, so calculated values have to be

used. Calculated data are fit to twelve parameters, according to

f(Q) =
6∑

i=1

ai e
−bi(Q/4π)2 Q [Å−1] . (D.1)

The values of the parameters for He for the Q range 0 ≤ Q ≤ 25 are given in Table D.1.

Table D.1: He Form Factor Parameters
i ai bi

1 0.69475 5.83366
2 0.62068 12.87682
3 0.38661 2.53296
4 0.15223 28.16171
5 0.12661 0.97507
6 0.01907 0.25308

Z. Su and P. Coppens, Acta Cryst. A 53, 749 (1997).
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D.2 Thermodynamic Relations

The melting curve of helium has been the subject of several measurements. Fits have been made

for several quantities using the data. The relationship used to fit the melting pressure, Pm, to the

temperature, T , is the Simon equation,

Pm = a + bTm
c Pm [MPa] Tm [K] . (D.2)

The values of the parameters used in this equation for He are given in Table D.2. The relationship

used to fit the molar volume of the fluid, Vf , to the melting pressure, Pm, is

Vf = d′ + b′(Pm + a′)c′ Vf [cm3/mol] Pm [MPa] . (D.3)

The values of the parameters used in this equation for He are given in Table D.3. The relationship

used to fit the change in the molar volume due to melting, ∆Vm, to the melting pressure, Pm, is

∆Vm = A−B log(Pm + C) ∆Vm [cm3/mol] Pm [MPa] . (D.4)

The values of the parameters used in this equation for He are given in Table D.4. From Eqs. D.3

and D.4, the bulk molar volume of the solid can be obtained along the melting curve.

The hcp-fcc-fluid triple point for both He isotopes have been measured, as well as the hcp-fcc

transition. An approximate linear relation can be formed for the transition’s lower pressures,

Ptr = A′ + B′(T − C ′) Ptr [MPa] Tm [K] . (D.5)

The values for the triple point and the fit parameters are listed in Table D.5.

135



Table D.2: Parameters for the Pm–T Fit
Isotope Pm range a b c

3He 7.5–343 a 2.467 1.969372 1.517083
4He 3.6–343 a −1.746 1.697979 1.555414
4He 100–1000 b −3.186 1.783518 1.54171

a R. L. Mills and E. R. Grilly, Phys. Rev. 99, 480 (1955).
b R. K. Crawford and W. B. Daniels, J. Chem. Phys. 55, 5651 (1971).

Table D.3: Parameters for the Vf–Pm Fit

Isotope Pm range a′ b′ c′ d′
3He 4.9–349 0.1054 35.1242 −0.161532 −3.2482
4He 3.4–349 1.4567 37.8289 −0.107253 −10.0712

E. R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 8, 1 (1959).

Table D.4: Parameters for the ∆Vm–Pm Fit
Isotope Pm range A B C

3He 14.3–349 1.19967 0.30825 −4.1758
4He 17.2–349 1.26955 0.33439 −10.125

E. R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 8, 1 (1959).

Table D.5: He hcp-fcc Transition Values
Fluid Triple Point Fit Parameters

Isotope T [K] P [MPa] A′ B′ C ′
3He 17.8 158.0 156.0 61.7 17.65a

4He 14.9 111.6 174.5 55.0 15.8b

a M. G. Ryschkewitsch, J. P. Franck, B. J. Duch, and W. B. Daniels, Phys. Rev. B 26,
5276 (1982).

b J. P. Franck, Phys. Rev. B 22, 4315 (1980).
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D.3 Mass

The atomic mass of helium, m, is needed to calculate equivalent Debye temperature. It is given in

atomic mass units (amu), where

1 amu = 1.660565(86)× 10−24 g. (D.6)

The values for m are given for both helium isotopes in Table D.6.

Table D.6: He Isotope Masses
Isotope m [amu]

3He 3.0160293
4He 4.0026032
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Appendix E

hcp Elemental Crystals

This section presents previously measured properties of various elemental hcp crystals at 295 K.

Table E.1 contains values for 〈u2〉 in the form of

Ba ≡ 8π2〈ua
2〉 and Bc ≡ 8π2〈uc

2〉 . (E.1)

Fig. E.1 is a graph of 〈uc
2〉/〈ua

2〉 versus c/a, with a circle marking the c/a value of 1.6310 for He.
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Table E.1: hcp Elemental Crystals
Element Ba [Å2] a Bc [Å2] a c/a ratio b

Be 0.599 0.541 1.568
Dy 0.81 0.89 1.5370
Er 0.57 0.73 1.5700
Gd 0.80 0.88 1.5904
Ho 0.96 0.97 1.5698
Lu 0.86 0.97 1.5846
Mg 1.34 1.58 1.6235
Sc 0.72 0.73 1.5936
Tb 0.67 0.71 1.5811
Y 0.83 0.80 1.5712
Zn 0.82 2.04 1.8563

a N. G. Krishna and D. B. Sirdeshmukh, Acta Crystallogr. Sect. A 54, 513 (1998).
b W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals (Pergamon,

New York, 1967), Vol. 2.
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Figure E.1: A graph of 〈uc
2〉/〈ua

2〉 versus c/a, for various hcp elemental crystals. The circle
represents a c/a ratio of 1.6310 for He and a 〈uc

2〉/〈ua
2〉 of 1.
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Appendix F

Debye-Waller Data

This appendix contains all the Debye-Waller data discussed in this thesis.

The Q-dependent data presented here show the raw values of the integrated intensities of the

scans, along with the corrections applied to them. The value Iraw corresponds to the raw integrated

intensity, with only the deadtime correction, the monitor correction, the form factor multiplier from

the structure factor, and the attenuator absorption correction applied to it. The value Ifinal comes

from dividing Iraw by the squared form factor (f2), and the Lorentz polarization factor (L). For

the APS 1998 data, the volume correction for a small beam (CS), as described in Section 4.1.6, is

also divided out.

The T -dependent data presented here only show the final intensity. The intensity is corrected

for the deadtime, the monitor reading, the form factor, and the Lorentz polarization factor. Since

the same attenuator was used for all scans in a set, correcting for it was unnecessary. In practice,

since the 2θ angle of the reflection will not change very much as the temperature is changed (the

molar volume does not change very much with small temperature changes), the form factor and

Lorentz factor corrections will not vary that much. For all the data presented here, exclusion of

these corrections did not change the resultant data at all, within the precision used.
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Table F.1: NSLS 1996 Q-dependent Measurement 1 A
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.4117 1.7559× 103 2.2316 3.3999 2.3144× 102

110 4.1788 1.1874× 102 0.8931 2.0082 6.6204× 101

200 4.8260 3.6360× 101 0.6135 1.7599 3.3675× 101

201 4.9927 1.5678× 101 0.5562 1.7070 1.6512× 101

210 6.3829 7.7625× 10−1 0.2442 1.3819 2.3003× 100

211 6.5106 8.6144× 10−1 0.2265 1.3598 2.7967× 100

300 7.2362 1.8577× 10−1 0.1484 1.2521 1.0000× 100

Table F.2: NSLS 1996 Q-dependent Measurement 1 B
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.4123 1.5758× 103 2.2311 3.3991 2.0778× 102

110 4.1794 1.0746× 102 0.8928 2.0079 5.9942× 101

200 4.8261 2.5484× 101 0.6135 1.7599 2.3603× 101

201 4.9918 2.3197× 101 0.5565 1.7072 2.4416× 101

210 6.3832 1.2279× 100 0.2442 1.3818 3.6394× 100

211 6.5104 9.2023× 10−1 0.2266 1.3599 2.9870× 100

300 7.2365 1.8573× 10−1 0.1483 1.2521 1.0000× 100

Table F.3: NSLS 1996 Q-dependent Measurement 3
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.4120 1.6496× 103 2.2313 3.3995 2.1748× 102

101 2.7303 9.6757× 102 1.9281 3.0127 1.6657× 102

102 3.5170 2.9026× 102 1.2907 2.3617 9.5221× 101

200 4.8216 3.1862× 101 0.6151 1.7613 2.9409× 101

112 4.8982 2.6216× 101 0.5881 1.7365 2.5673× 101

201 4.9880 1.7919× 101 0.5578 1.7084 1.8805× 101

202 5.4581 9.2089× 100 0.4223 1.5776 1.3824× 101

203 6.1630 2.0918× 100 0.2781 1.4224 5.2890× 100

212 6.8723 3.8302× 10−1 0.1833 1.3026 1.6043× 100

204 7.0318 3.7362× 10−1 0.1670 1.2797 1.7481× 100

300 7.2311 1.8642× 10−1 0.1488 1.2528 1.0000× 100
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Table F.4: NSLS 1996 Q-dependent Measurement 4 A
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

111 2.5584 2.4941× 103 2.0892 3.2094 3.7197× 102

200 2.9547 1.5441× 103 1.7285 2.7909 3.2008× 102

220 4.1794 2.0943× 102 0.8928 2.0079 1.1683× 102

311 4.8997 5.7792× 101 0.5875 1.7360 5.6664× 101

222 5.1184 3.5086× 101 0.5164 1.6695 4.0696× 101

420 6.6079 1.7849× 100 0.2139 1.3437 6.2091× 100

422 7.2382 3.5362× 10−1 0.1482 1.2518 1.9062× 100

511 7.6769 1.3812× 10−1 0.1152 1.1991 1.0000× 100

333 7.6779 1.4135× 10−1 0.1151 1.1990 1.0240× 100

Table F.5: NSLS 1996 Q-dependent Measurement 4 B
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

220 4.1794 2.1767× 102 0.8928 2.0079 1.2143× 102

311 4.8997 5.2924× 101 0.5875 1.7360 5.1890× 101

222 5.1184 3.5150× 101 0.5164 1.6695 4.0771× 101

420 6.6079 1.7016× 100 0.2139 1.3437 5.9193× 100

422 7.2382 3.4555× 10−1 0.1482 1.2518 1.8627× 100

511 7.6769 1.4054× 10−1 0.1152 1.1991 1.0175× 100

333 7.6780 1.3803× 10−1 0.1151 1.1990 1.0000× 100
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Table F.6: NSLS 1996 Q-dependent Measurement 12
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.3889 1.2207× 104 2.2541 3.4317 1.5781× 103

101 2.7066 8.1869× 103 1.9499 3.0384 1.3818× 103

110 4.1404 7.8246× 102 0.9129 2.0255 4.2317× 102

200 4.7793 2.6647× 102 0.6306 1.7754 2.3802× 102

201 4.9442 1.6816× 102 0.5723 1.7220 1.7063× 102

202 5.4118 8.6198× 101 0.4340 1.5894 1.2495× 102

210 6.3236 8.4953× 100 0.2529 1.3925 2.4124× 101

211 6.4493 8.4536× 100 0.2348 1.3703 2.6271× 101

300 7.1694 9.5847× 10−1 0.1542 1.2609 4.9293× 100

302 7.6050 5.3896× 10−1 0.1200 1.2072 3.7201× 100

220 8.2786 9.3398× 10−2 0.0820 1.1390 1.0000× 100

Table F.7: NSLS 1996 Q-dependent Measurement 13
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.3583 4.2722× 103 2.2843 3.4751 5.3818× 102

101 2.6711 2.6120× 103 1.9828 3.0776 4.2803× 102

110 4.0893 2.1933× 102 0.9398 2.0490 1.1390× 102

200 4.7181 8.5191× 101 0.6536 1.7963 7.2558× 101

201 4.8826 5.4192× 101 0.5935 1.7415 5.2436× 101

202 5.3427 2.5834× 101 0.4522 1.6074 3.5542× 101

203 6.0329 5.3424× 100 0.3003 1.4480 1.2286× 101

210 6.2407 2.2419× 100 0.2656 1.4077 5.9969× 100

211 6.3645 2.1756× 100 0.2469 1.3851 6.3626× 100

300 7.0768 2.3830× 10−1 0.1627 1.2734 1.1501× 100

302 7.5100 1.5437× 10−1 0.1267 1.2182 1.0000× 100

Table F.8: NSLS 1996 Q-dependent Measurement 15
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.3337 2.7803× 103 2.3088 3.5110 3.4298× 102

200 4.6629 4.9492× 101 0.6751 1.8156 4.0379× 101

201 4.8274 3.0026× 101 0.6130 1.7594 2.7839× 101

300 6.9945 2.1931× 10−1 0.1707 1.2849 1.0000× 100
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Table F.9: NSLS 1996 Q-dependent Measurement 16
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

111 2.6099 1.2145× 103 2.0402 3.1478 1.8910× 102

220 4.2574 1.4504× 102 0.8538 1.9738 8.6067× 101

131 4.9943 3.9636× 101 0.5557 1.7065 4.1798× 101

222 5.2148 1.9932× 101 0.4878 1.6421 2.4884× 101

240 6.7314 1.5377× 100 0.1990 1.3240 5.8362× 100

242 7.3724 2.8158× 10−1 0.1372 1.2348 1.6626× 100

242 7.3730 2.7061× 10−1 0.1371 1.2347 1.5984× 100

242 7.3738 3.1884× 10−1 0.1370 1.2346 1.8844× 100

333 7.8214 1.2556× 10−1 0.1061 1.1834 1.0000× 100

333 7.8214 1.3426× 10−1 0.1061 1.1834 1.0694× 100

Table F.10: NSLS 1996 Q-dependent Measurement 18 A
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.3781 1.5718× 103 2.2647 3.4469 2.0135× 102

101̄ 2.6901 1.0710× 103 1.9652 3.0565 1.7830× 102

110 4.1145 9.6723× 101 0.9264 2.0373 5.1245× 101

112̄ 4.8261 3.1184× 101 0.6135 1.7599 2.8882× 101

210 6.2844 1.2839× 100 0.2588 1.3996 3.5444× 100

211 6.4097 1.2625× 100 0.2404 1.3772 3.8138× 100

213̄ 7.3353 1.7367× 10−1 0.1401 1.2394 1.0000× 100

Table F.11: NSLS 1996 Q-dependent Measurement 18 B
hk` Q [Å−1] Iraw f2(Q) L(θ) Ifinal

100 2.3779 1.0195× 103 2.2650 3.4472 1.3058× 102

101̄ 2.6892 7.2497× 102 1.9660 3.0575 1.2061× 102

110 4.1145 7.3894× 101 0.9264 2.0373 3.9151× 101

112̄ 4.8249 2.5114× 101 0.6139 1.7602 2.3240× 101

210 6.2838 1.3454× 100 0.2589 1.3997 3.7128× 100

211 6.4091 1.2070× 100 0.2405 1.3773 3.6447× 100

213̄ 7.3341 1.7381× 10−1 0.1402 1.2396 1.0000× 100
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Table F.12: NSLS 1996 T -dependent Measurement 3
T [K] I T [K] I

(±0.01) (±0.01)
11.91 1.5996 14.82 1.2539
11.93 1.5856 14.83 1.2507
12.89 1.4617 15.89 1.1119
13.83 1.3558 15.90 1.1211
13.84 1.3522 16.83 1.0000

Table F.13: NSLS 1996 T -dependent Measurement 18
T [K] I T [K] I

(±0.01) (±0.01)
12.00 1.4780 13.45 1.1707
12.29 1.4137 13.46 1.1791
12.55 1.3630 13.69 1.0977
12.97 1.2764 13.92 1.0644
12.99 1.2718 14.16 1.0306
13.19 1.2405 14.40 1.0000

Table F.14: APS 1998 Q-dependent Measurement 5
hk` Q [Å−1] Iraw f2(Q) L(θ) CS(ω, χ) Ifinal

100 2.3491 2.4157× 103 2.2935 3.4885 1.0000 3.0193× 102

200 4.6987 5.2988× 101 0.6611 1.8030 1.0001 4.4453× 101

300 7.0479 2.1141× 10−1 0.1655 1.2774 1.0001 1.0000× 100
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Table F.15: APS 1998 Q-dependent Measurement 12
hk` Q [Å−1] Iraw f2(Q) L(θ) CS(ω, χ) Ifinal

002 2.5586 4.8799× 104 2.0891 3.2093 1.0061 7.2346× 103

102 3.5163 1.6050× 104 1.2912 2.3621 1.0004 5.2603× 103

103 4.5324 3.4292× 103 0.7284 1.8632 1.0000 2.5266× 103

112 4.8954 1.5459× 103 0.5890 1.7374 1.0023 1.5072× 103

004 5.1185 1.4053× 103 0.5164 1.6695 1.0194 1.5992× 103

202 5.4563 5.5779× 102 0.4227 1.5781 1.0068 8.3046× 102

104 5.6571 4.2591× 102 0.3753 1.5294 1.0010 7.4138× 102

114 6.6046 5.1157× 101 0.2144 1.3442 1.0000 1.7754× 102

105 6.8371 3.2672× 101 0.1871 1.3079 1.0039 1.3302× 102

213 7.4412 6.4570× 100 0.1318 1.2264 1.0008 3.9908× 101

006 7.6779 6.1962× 100 0.1151 1.1990 1.0409 4.3124× 101

205 8.0098 1.8502× 100 0.0954 1.1642 1.0005 1.6657× 101

1̄16 8.0476 1.8320× 100 0.0934 1.1605 1.0254 1.6490× 101

214 8.1766 8.3098× 10−1 0.0868 1.1483 1.0012 8.3251× 100

116 8.7379 2.6929× 10−1 0.0636 1.1015 1.0014 3.8409× 100

304 8.8592 1.4185× 10−1 0.0595 1.0927 1.0155 2.1496× 100

215 9.0319 1.0333× 10−1 0.0541 1.0809 1.0009 1.7647× 100

107 9.2774 5.1306× 10−2 0.0474 1.0656 1.0160 1.0000× 100
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Appendix G

Procedures

This appendix contains detailed accounts of the procedures used during the experiment. The

procedures are in the preferred chronological order.

G.1 Beamline Alignment

The optics of the beamline are set up by the beamline personnel. They set the energy of the photons

and focus the beam on the position intended to be the center of the diffractometer’s rotation. What

is left to align is everything in the experimental hutch, such as the diffractometer, the slits, and

the ionization chambers.

One of the tools needed for this job is “burn paper”, which is a paper with a special coating

that changes color where X-rays strike it. Another helpful tool is the use of CCD cameras in

conjunction with a fluorescent screen, since the screen glows when struck with X-rays, allowing

someone see where the beam is in real time.

Once the optics are set up correctly, the diffractometer needs to be aligned first. This is

with the normal assumption that the diffractometer circles are aligned with respect to one another

already; if they aren’t, the manufacturer usually has to do this. The first thing to do is to make

sure that the diffractometer is perpendicular to the beam (see Fig. 3.6). This is best achieved by

using the 2θ arm and burn paper. The arm is set to 180̊ and a burn is taken. Then the arm is

set to 0̊ , with another burn being taken. The distance horizontally between marks should be zero,

and if it is not, one can twist the diffractometer until it is.

The next thing to do is make the beam pass through the center of rotation of the diffractometer.

A specially made metal pin is mounted onto the φ circle and is watched through a telescope that

is part of the diffractometer. The pin is rotated in χ while periodically adjusting the height of the

pin until the tip is the center of rotation. Once this is done, the X-ray beam is let into the hutch
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and is centered by either moving the diffractometer or steering the beam using the beamline optics.

Burn paper is used to check the positioning, with the final result being that the beam is centered

on the tip of the pin.

At this point, the slits are put into the path of the beam. They are closed down until the

desired size of the beam is achieved, keeping the center of the beam at the pin’s tip. The ionization

chambers are also put into the beam path; they are fairly simple to align since the windows are so

large.

The software positions of the motors ω, χ, and φ need to be set in the software. For the 0̊

position of ω, the χ circle needs to be vertical, which can be checked with a level. For the 90̊

position of χ, the φ stage needs to be horizontal, which can again be checked with a level. The

value of φ is completely arbitrary, and is set to be exactly the counter value.

Setting the software value of 2θ is more crucial that that of the other motors, since its value

determines the planar spacing of a reflection. The first thing is to mount the scatter slit, the flight

tube, and a pair of motorized slits onto the 2θ arm. A PIN diode detector is mounted behind the

slits, which are set wide open. The PIN diode is able to take the full intensity of the incident beam

without being harmed. The 2θ arm is then put into the horizontal orientation, with burn paper

mounted onto the front of the scatter slits. The beam shutter is opened, creating a mark on the

burn paper. Ideally, the mark is at the vertical center of the scatter slit. If it isn’t, the 2θ position

is moved in the direction that would accomplish this, followed by another burn. This is repeated

until the mark is at the center of the scatter slit. At this point the detector should register counts

from the beam striking it. This centered position is set as zero for the 2θ software value. Each slit

pair is then centered about this position by finding the zero position of each slit blade; this is done

by noting the full count rate with the slits wide open, moving one blade inward until the rate is

exactly one half, setting that position in the software to zero, moving it back out again, and then

doing the same for the other blade. After this is done, the slits are only moved such that both

blades move at the same time and in opposite directions; the slit pairs will either open or close,

keeping the center constant.

The next thing to do is to mount the Displex onto the φ circle. None of the radiation shields

are attached at this point, leaving the sample cell in plain sight. Now the sample cell has to be

centered within the φ circle. While rotating the Displex in φ, the cell is watched through the
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telescope to see if it stays at the same position, or if it moves back and forth, being out of center

in the φ circle. If the cell is out of center, the x-y stage on the Displex is adjusted until the cell’s

position does not move as the Displex is rotated.

The last thing to do is to set the lengthwise center of the cell to the beam position. This is

checked by mounting burn paper on the cell, and exposing it to the X-ray beam. To move the cell,

the stage’s z position is changed.

G.2 Gas System Preparation

G.2.1 Strain Gauge Cell Calibration

Before the sample gas is prepared, the strain gauge cell (SGC) needs to be calibrated. The strain

gauges mounted on the cell are assembled into a Wheatstone bridge and a voltage is applied to

both ends of the bridge. There is a potential difference across the bridge which changes as the

strain in the cell increases due to increased gas pressure in the cell. The relation between voltage

and pressure is linear, where the correspondence constant is arbitrary. Strain is inherent in the

bridge due to the gauges being mounted onto a cylinder’s curved surface, resulting in a constant

component to the pressure-voltage relationship.

The way to find the parameter values of the linear relationship between voltage and gas pressure

is to measure it. This is accomplished by pumping the system to maximum pressure, and then

reading the voltage from the strain gauge meter and the pressure from the high precision Heise

gauge. Measurements are repeated at intervals by lowering the pressure with a blow-off valve until

the pressure goes to near zero.

Once all the measurements are taken, a linear fit is done. An example of experimental data

and a linear fit is given in Fig. G.1.

G.2.2 Sample Gas Preparation

One of the more important concerns of the experimental setup is the purity of the sample gas.

Before the sample cell is filled with the sample gas, a procedure has to be followed that prepares

the gas system, which depends on whether the sample is 3He or 4He. The 3He case is just an

extension of the 4He case, so I will consider 4He first.
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Figure G.1: A sample SGC calibration graph. It show the relationship of the voltage read from the
strain gauge cell to the measured system pressure. The line is from a linear fit.
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The first thing to do is pump out the system for at least a few hours, in order to get all the

impurities (such as water) out of the system that may have crept in while in storage. The entire

pressure system, all the way up to the helium bottle’s valve, is pumped out. The system is then

pressurized with high purity 4He to the maximum pressure of the compressor. One lets it sit for

maybe 15 minutes, then releases the gas to a pressure that is slightly above room pressure, so as

to not allow anything back into the system. One then waits for 15 more minutes. This purging

process is done up to five times. After the purging, the cold trap is filled with liquid nitrogen and

the system is pumped up with 4He again, to the desired pressure.

For the case of 3He, a few more details must be attended to. Before the pumping out of the

system, the 3He and 4He bottles need to be connected to each other and also to the fore of the

compressor, so that the bottles don’t need to be swapped after the system is purged. The pumping

out and purging process is the same as for 4He. The system is then pumped out again, then purged

with 3He at least once. At this point, with the pressure at a minumum, the cold trap is filled with

liquid nitrogen. The system is then pressurized with 3He to the desired pressure.

The whole process can take several hours. The reason for the 15 minute wait between the

pumping up and the release of the helium is because of the small inner diameter of the tubing to

the SGC, the PGC, and the sample cell. It can take several minutes for the gas to flow in and out

of those areas. The reason one needs to wait until the final pump before the cold trap is filled, is

that one wants to trap all impurities before they go into the sample cell, but if the trap is filled

earlier, the trap fills up with contaminants that would otherwise leave in the purging.

For a 4He sample, there should be no impurities in the sample cell at this point. For 3He, the

only impurities in the sample cell will be some residual 4He, which will not freeze in the cold trap.

In this case, the resulting crystal will have a small amount of the 4He in it; if too much 4He is

in the crystal, serious problems of growing a good single 3He crystal arise, as well as altering the

experimental results from pure 3He.

G.2.3 Pressure Stability

A major concern of the experiment is the pressure stability because it affects the quality of the

crystal, once grown. If the pressure changes (most likely drops), the molar volume of the crystal

changes, changing the parameters of the crystal itself, which is especially undesirable while in the
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middle of a measurement. The pressure change can have an even worse effect of causing a good

crystal to worsen.

One cause of instability is a leak in the system. This leads to the need of the pressure system

being very leak tight. Another cause of instability is fluctuations of the temperature in the hutch,

where most of the pressure system resides. A cause of this can be the opening and closing of the

hutch door, if the temperatures inside and outside the hutch differ.

G.3 Orientation Access

After the Displex is mounted on the diffractometer, the orientational limitations of each of the four

circles of the diffractometer need to be found. This is a two person job, where one person changes

the motor positions while the other person watches the diffractometer. At the end of the job, the

hard limits need to be set, which involves moving small pegs along the circles so they will come

into contact with a limit switch when the motor is at the limiting angle. The software limits also

need to be set.

Since the Displex juts out of the bottom of the φ circle around 20 cm, with two electrical

connectors, two high pressure helium fittings (for the Displex), a vacuum fitting, and the sample

gas line all coming out of it, there are many ways for the Displex to run into the diffractometer.

The Displex limits values of φ and χ. As the Displex is rotated in φ, the connectors revolve around

the base; at certain values of χ, the connectors will run into the diffractometer. This effectively

means that the range in χ depends on the value of φ. The value of φ normally used is one where

all the connectors clear the diffractometer, although it may be needed to be changed in the course

of looking for a reflection. The next limitation of the motion in χ is the high pressure helium lines.

These lines go between the Displex head and the compressor, and are very heavy and inflexible.

Even if they are strung from the ceiling and have spiral plastic tubing segments, these lines will

exert a strong pull on the Displex head itself when χ is changed too much, creating too much

tension. Therefore, χ has to be limited to values where the tension is not too great. This discussion

was based on the assumption that the diffractometer in general allows free movement over all χ

values; if the χ circle is of the split ring type, there is a gap missing at the top to allow the beam

to pass, limiting the allowable range of χ even further.

The theoretical limits for ω are ±90̊ , although this is more like ±85̊ if the χ circle is not the
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split ring type. However, due to the close proximity of equipment, this range is more limited in real

life. On the upstream side of the Displex, there is probably a flight path, slits, and an ionization

chamber all very close; running into an of these would be devastating, since it would throuw off the

entire alignment.

The 2θ arm has a flight path from the detector up to the scatter slits, and this could also

come into contact with the χ circle. A collision of this sort makes the 2θ value inaccurate, as well

as misaligning the detector slits. This type of collision depends on the position of both 2θ and ω,

making it hard to compensate for.

The detector slits should never be closed completely, since the blades will come into contact.

This can cause the center of the slit pair to change. Opening the slits too wide is also bad, since

the motors lose steps when the slits stop opening, also making the center inaccurate.

G.4 Deadtime Measurement

This procedure was done only for the detector used to take the rocking curve data. It did not

need to be done with the ionization chamber monitors, since the nonlinear range for them was not

reached.

For detector count rates that are slightly into the nonlinear range of a detector, the deadtime

correction is of the form

ntrue = −1
τ

ln(1− τ nobs) ' nobs

1− nobs τ
(G.1)

where τ is the deadtime of the detector, nobs is the measured count rate, and ntrue is the true count

rate.

The measurement of the detector’s deadtime is done by measuring the count rate with both the

detector and a flux monitor. This is done for the two cases of when the attenuator is in place and

when the attenuator is removed. After the measurements, the detector count rates are normalized

by dividing them by the monitor count rates. These measurements are done at several different

base intensities by varying the incident flux.

Several definitions need to be made. The normalized count rate where the attenuator is not in

place is nNO. The normalized count rate where the attenuator is in place is nAO. The true count

rate for the no attenuator case is nNT. The true count rate for the attenuator case is nAT. Using
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the ratios

RO ≡ nAO

nNO

and RT ≡ nAT

nNT

, (G.2)

Eq. G.1 becomes

RO = RT + τ(1−RT) nAO . (G.3)

This is a linear relationship of the form

RO = MnAO + B , (G.4)

where the slope (M) and the offset (B) are

M = τ(1−RT) and B = RT . (G.5)

If M and B are solved for τ , the result is

τ =
M

1−B
. (G.6)

So, in order to calculate the deadtime τ , a linear fit of the measured data needs to be made, where

the slope and offset are plugged into the last equation.

Only one attenuator can be used, where the best results come from an attenuator which has an

absorption being roughly 0.2. The best way to get a good deadtime value is to take measurements

with several different attenuators at each different intensity. The values measured for an attenuator

can be paired with the values of a weaker attenuator, with the weaker set being used as the “no

attenuator” values. This will give many cross checks.

The way to have an adjustable incident intensity is to position the detector at a location of a

beryllium powder ring. By moving the detector either closer to or further from the ring maximum,

a variable source, which is stable, is created. The maximum intensity used with no attenuator

present should correspond to the maximum count rate used during the experiment.
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G.5 Attenuator Measurement

Accurate measurement of the absorptions of the attenuators is important since these values are

critical when determining 〈u2〉 values. This section assumes that all measurements made with the

detector are corrected for the dead time.

The process of measuring the absorption of an attenuator is simple. A detector downstream of

the attenuator and a monitor upstream of the attenuator are used. With the attenuator removed

and the beam shutter opened, the detector and the monitor count for a certain gate period, with

the detector count then being divided by the monitor count (normalization). This same process

is done a second time while the attenuator is in place. The absorption is then found by dividing

the normalized detector count when the attenuator was in place by the count when the attenuator

wasn’t in place. This process is repeated for all the attenuators used.

The detector used for the rocking curve measurements was the detector normally used for these

measurements. This might seem to be at cross purposes, since the reason attenuators are used is

that the rocking curve detector’s dynamic range is not as good as the range of peak intensities;

the attenuators are used to scale the brighter reflections down into the detector’s range. The way

to get around this conundrum is to only use attenuators with small enough absorptions that can

be measured with the detector, and then use a multiple of them, instead of one thick piece. The

individual attenuator pieces used for this thesis never had an absorption less than 10−3.

The measurement assumes that a reasonable number of photons are striking the detector when

there is no attenuator present, but not too many such that the detector is saturated. The incident

beam can’t be used, since it will destroy the detector. There is also the problem that the photon

flux after the monitor needs to be constant. The detector can be brought to the fringes of the

incident beam, so only a small portion of the photons are detected; this method is bad since the

stability of the fraction of the photons hitting the detector changes as the beam moves slightly over

time. If a crystal is in the sample cell, a reflection could be used by going to the reflection’s position

and using the peak’s intensity for the measurement; this is not ideal, since this implies that the

crystal is stable, and that is a bad assumption to make for helium crystals. The best method is to

move the detector to one of the beryllium powder rings’ positions (see Appendix C), and use it as

the stable flux source.

Once the beryllium ring is found, the count rate needs to be set to the maximum value for the
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detector when the attenuator is not present, giving the best statistics. This fine control is done by

moving either closer to or further from the peak of the beryllium ring. If the ring is not strong

enough, a different ring may be needed.

G.6 Background Measurement

G.6.1 Scanning Measurement

Before the run begins, a background scan over 2θ ’s range while the Displex is in the horizontal

position (χ = 180̊ ) needs to be taken. This records any diffraction taking place other than that from

helium crytals. This should be done when there is liquid helium in the cell, with the temperature

just above freezing; the conditions should be as close to actual data taking conditions as possible.

Also, the detector slits should be opened wide horizontally and narrow vertically, such as 1 mm

vertical by 8 mm horizontal. A sample scan can be seen in Fig. G.2.

It needs to be remembered that the detector will only see what the two sets of slits on the

detector arm allow it to see the immediate vicinity of the sample crystal. Because of the way the

two sets of slits are set, the only places diffraction can come from are the sample cell itself and

anything that has frozen on the outside of the cell. The expected 2θ peaks corresponding to Be and

BeO powders will be present, with the positions being predictable since the crystalline structures

and lattice parameters for Be and BeO are known (see Appendix C). It is useful to index the

expected Be and BeO peaks against the actual peaks, so as to make sure that there are no extra

peaks.

The reason that this scan needs to be made is to have a rough map of potential problems in 2θ

in case one of the desired helium reflections is at the same 2θ value as a peak on this scan. This is

invaluable at high Q where the helium peaks are of the same magnitude as the background peaks.

In practice, the Be and BeO peaks will be in the same place at different runs, but the strength of

the diffuse background can vary widely, and strange peaks in the background occasionally occur.

G.6.2 Picture Taking

Another type of beryllium background measurement involves taking a picture of the background

rings. A Polaroid [1] is mounted on the incident end of the detector arm, with the arm being at
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Figure G.2: Background Scan for the 1996 NSLS beamtime. The intensity scale is logarithmic so
the weaker peaks can be seen easier. The peaks correspond to Be and BeO reflections for 16.0 keV
photons.
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roughly 20̊ . The beam shutter for the hutch is opened for a few minutes, exposing the Polaroid,

and is then closed. The Polaroid film is removed and developed. The picture should be of white

rings on a black background, with the rings appearing to be doubled.

The doubling of the rings is due to the fact that the beam passes through the beryllium cell

wall twice. The physical separation of these two walls creates two separate cones of radiation, with

the upstream cone belonging to the first cell wall. These slightly offset cones will strike the Polaroid

twice, creating the doubled ring.

Simple geometry is used to get the approximate 2θ angles of the rings. The distance from the

center of the sample cell to the Polaroid needs to be known. Using a compass, one finds the center

of the rings. The distances of the rings from their center are then measured. A rough value for 2θ

is generated using

tan(2θ) ≈
(

ring-to-center distance
cell-to-picture distance

)
.

By comparing these 2θ values to the theoretical values for Be reflections (see Appendix C), each

ring should be able to be matched with a reflection. BeO rings normally aren’t strong enough to

appear, so they are ignored.

The background scan (described in the last section) can be useful when used with the Polaroid,

when the ring on the picture is matched with a peak on the scan, using the determined reflection

indices. The scan gives the relative magnitudes of the rings, which a Polaroid can’t. The scan also

gives actual 2θ values for each of the rings, instead of estimated values.

This picture will be used later to help index crystal peaks. Similar pictures will be made after

crystals are grown, where reflections will also show up. In order to roughly identify the 2θ values

of the crystal peaks, the indexed Be rings are used as guides.

G.7 Crystal Growth

When growing the crystal, it is hoped that it will be single and perfect. This does not always

happen, although the crystal may still be usable: this depends on how bad (as defined later) the

crystal is.

The growth of a good crystal is somewhat of an art, with the procedures used being based on

many trials and errors. What works at one beam time seems not to work at the next beam time.
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There is also no way to grow a crystal that is oriented in a particular direction; the direction a

crystal takes is random (with a slight exception for hcp, which is explained later).

G.7.1 Considerations

To understand how a crystal used for this thesis was grown, the thermal gradient in the cell needs

to be understood. In the Displex setup, the fill line is a direct connection from the sample cell to

the outside, making it a conduit of heat to the sample cell. On the other end of the cell, the Displex

cold finger absorbs heat from the sample cell. This causes a thermal gradient along the cell’s axis,

with the temperature increasing the further along the cell from the cold finger. For the rest of this

section, the z direction is defined as along the cell axis, with the positive direction being away from

the cold finger.

Assuming that the temperature at any point on the cell is wholly dependent on its z position,

there will be a z value of the cell where the temperature is at helium’s freezing point as the

temperature is being lowered. This point’s z value will increase with time, moving away from the

cold finger, and any helium between this point and the cold finger will be frozen. This shows that

the crystal is grown in a gradual process from one end of the cell to the other, which has the

capacity to grow a nice crystal. In order to increase the thermal gradient along the cell, a current

can be passed through the fill line heater, causing the fill line to warm up further; this can be useful

at times.

If the temperature along the cell’s cross-section at any z position is uniform, the crystal could

grow unevenly and crookedly, increasing the chance a fractured crystal will form. This is avoided

by having a uniform wall thickness for the cell and making sure nothing touches the cell along the

walls, which would cause a hot or cold spot.

There is a side effect of the heat gradient when a hcp crystal is grown. An hcp helium crystal

grows with its c-axis perpendicular (within a few degrees) to the thermal gradient and thus also

to the cell axis. This limits the possible crystal orientations to two degrees of freedom, simplifying

the indexing of the complex hcp crystal.

When growing any crystal, the slower it is done, the better the chance in creating a single

crystal. Therefore, a bad growth plan is simply turning on the Displex, letting the temperature

drop immediately to its minimum.
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G.7.2 Freezing and Melting Signature

When the crystal forms, there is a signature on the logs that records the event, thus giving the

freezing temperature. One uses the pressure values from the strain gauge cell and the temperature

values from sensor B.

The molar volume of the liquid at freezing is larger than the molar volume of the solid. So

when the solid forms, less volume is used, causing the pressure of the remaining gas to drop. Since

the SGC is very sensitive, it is able to detect a pressure drop as small as this.

As a crystal is grown, the cold finger removes heat from the helium sample. Once solid starts to

form at the freezing temperature, the heat removed is the heat of melting for the helium, causing the

temperature to stay at freezing until the crystal is done growing. On the log, the temperature drops

until the solid starts to form. At that point the temperature becomes constant for a short period (a

temperature plateau) while the crystal grows, after which the temperature begins dropping again.

These two effects happen simultaneously, with the pressure dropping at a constant rate during

the freezing process. The pressure drop is the freezing sign watched for. Once it occurs, the

temperature plateau is watched, with it’s temperature value being the freezing temperature.

If the liquid helium is extremely pure, it can supercool to a temperature below equilibrium

freezing. At some point, the crystal will then begin to form, with the temperature quickly jumping

back up to the freezing temperature. The pressure initially drops quickly before decreasing at a

linear rate as the crystal forms. Figure G.3 shows the freezing signature of a 4He crystal which

supercooled before freezing.

From the freezing temperature of the crystal, the thermodynamic relations (see Appendix D.2)

can be used to get the pressure of the system.

G.7.3 Annealing

One way to try to heal a badly fractured crystal is to try to anneal it. This is done by bringing

the temperature of the crystal to just below freezing, and letting it sit. Hopefully the pieces of the

crystal, being soft, will merge together into a larger, nicer crystal.

This is nice in theory, but hard to get to work in practice. If the crystal is very bad, it can

take forever to anneal to a better version. Even after annealing, more times than not, it is still

a multicrystal, with the crystals now only slightly out of alignment; sometimes these crystals are
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Figure G.3: Freezing signature for a 4He crystal which supercooled. The top graph shows the
temperature of the crystal. The arrow points to the temperature plateau, corresponding to the
freezing temperature of the crystal. The bottom graph shows the pressure of the helium in the
system.
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usable.

Part of the problem is that the crystal is never one temperature, since there is always a thermal

gradient across the sample cell. So, it is impossible to have the whole crystal just below the freezing

temperature to anneal.

G.7.4 Actual Growth Practice

There are several methods described here for growing crystals. Not all methods used are described

here, since some methods don’t seem to work every time.

The normal method used is to lower the temperature of the helium liquid to a few degrees

above freezing. The temperature controller is then programmed to ramp the temperature down

slowly, at maybe 3 K/hour. Normally this grows a good crystal. The problem with this method

is that the temperature reduction is actually in small steps, making the logged temperature value

zigzag. This can mask the freezing signature when looking for its temperature plateau, since each

temperature step makes its own plateau. The key to overcoming this is to either take very small

steps or to not grow crystals very slowly.

When it comes to growing an hcp crystal, it sometimes helps to increase the temperature

gradient across the sample cell, since hcp crystals prefer to grow with the c-axis perpendicular to

the thermal gradient. This is done by allowing some current through the fill line heater.

Another way that has been shown to grow good crystals is to quickly grow a crystal; this

crystal will be bad, but that does not matter. The temperature is allowed to go to 0.25 K below

the freezing point. Current is passed through the fill line heater, warming up the cell and melting

the crystal. After raising the temperature around 5K above melting, the heater is turned off, and

the crystal is allowed to freeze again. This time, the freezing process is very gradual, since the set

point of the Displex is just below freezing. This method creates a good freezing signature, since the

transition is very smooth. The reason for going so far above the freezing temperature is to make

sure that the crystal has completely melted, leaving nothing to act as a seed.

G.7.5 Crystal Care

Once a crystal good enough to use is grown, it has to be treated carefully, in order to keep it from

losing its quality.

163



The temperature of the crystal should not be changed unless necessary, since a change can

cause the crystal to degrade or even alter its orientation. A sudden temperature change can be

disastrous. When a temperature dependent measurement needs to be made, temperature changes

should be made very slowly.

Another concern is a change in pressure. It can make the crystal fracture. It can also move

a crystal boundary near the path of the X-ray beam, decreasing (or increasing) the intensity of

diffracted peaks. These pressure changes can come from the change in the amount of helium frozen,

or from the change of the pressure of the gas in the gas handling system.

As time goes by, the crystal will keep changing and moving slowly. After each day of a crystal’s

existence, it is a good idea to re-center all the peaks, since their positions will be slightly different.

Sometimes the moving of the peaks is quicker than normal, requiring the re-centering be done every

few hours; when this happens, something drastic is probably about to happen, such as the peaks

simply vanishing as the crystal realigns.

G.8 Crystal Orientation and Peak Hunting

Orienting the crystal is a tedious and time consuming process. Since a characterized helium crystal

can’t be brought to the beamline, orienting has to be done while online. Orienting becomes more

complicated when the crystal is fractured, making the process harder. If the crystal is very bad,

orienting it is impossible. The quality of a crystal depends on the number of crystal fractures

and the sub-crystals’ relative orientations. The orientation of the crystal is determined using a

computer through the creation of an orientation matrix.

This experiment needs as many reflections found as possible. Finding a reflection means

centering on the associated peak and recording its position. Sometimes finding a peak is impossible

due to the peak being too weak; or it is at an orientation which is inaccessible to the experimental

setup, due to physical limitations.

The usefulness of the orientation matrix of a crystal is that it can be used to find peaks

quickly and easily. However, in order to create a matrix, several peaks need to be found. Since the

use of the matrix helps find peaks, and finding peaks improves the matrix, they are done almost

simultaneously, with the reflections being found in order from low Q to high Q. At the end of this

process, a high quality orientation matrix is finished, which is used to find every peak possible.
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The low Q peaks are extremely bright and relatively easy to find, which is good, since they

have to be found without any help from a matrix. Once enough reflections are found, the matrix

is created on a computer. This matrix is rather inaccurate, but good enough to help find the

next larger Q reflection. Once this reflection is found, the matrix is redone using the additional

information, making it more accurate, which makes it easier to find the next reflection. This process

is done over and over, until all the available reflections are found; without this method, it would

be virtually impossible to find high Q reflections, since they are so weak in intensity.

G.8.1 Considerations

There is crystal movement and annealing to consider with helium crystals. When peaks are found,

several things might happen over time. The peak positions could slowly start changing, and they

have to be followed by recentering on them (sometimes this has nothing to do with the crystal, but

is caused by the loss of steps by the stepper motor that moves 2θ, ω, χ, or φ). The peak shapes

are many times less than ideal, which is not a problem, but they sometimes change shapes over

time. This can cause the center to move or cause the integrated intensity to change; sometimes the

intensity of the peak suddenly increases or decreases. There is no way to stop these things except

grow a better crystal, since these afflictions seem to endlessly haunt bad crystals.

One reason for the movement of peaks is that the crystal can slowly rotate, due to the cylindrical

symmetry of the cell and the fact that the crystal is relatively soft. Another cause of these problems

is that the boundary between sub-crystals moves, as one grows and the other shrinks. If the crystals

have vastly different orientations, the integrated intensity will change; if the crystals are slightly

different in orientation, the shape or intensity of the peak may change, but normally the integrated

intensity of the peak stays the same.

Since the crystals grown can come in all types of qualities, from perfect to very bad, there has

to be some sort of criteria that determine whether a crystal is acceptable or not. This is important,

since it’s easy to spend a large amount of time on a bad crystal, only to have the resulting data

make no sense.

If the crystal is fragmented and has regions that are aligned very differently in the X-ray beam

path, the problem of identifying which peaks belong to which crystal arises. It is fairly simple to

check for the existence of this problem when a Laue rotation picture of the crystal is taken. On
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the picture, if there are multiple spots at the same radial distance from the center of the beryllium

rings with different shapes and sizes, this most likely exists; the same is true if the spots seem to

come in matching sets periodically about the circle. If a narrow ω range was used when taking the

picture, this makes few spots appear, making it harder to judge the crystal’s quality. Fragmentation

shouldn’t be too much of a problem if one of these sub-crystals has peaks that are much brighter

than the peaks from the other sub-crystals, and if the peaks aren’t bad, which is discussed later.

If enough reflections can be found in order to create a matrix, the qualities of the peaks needs

to be considered. In order to do an integrated intensity scan, a rocking curve (scan in ω) has to be

done. Since ω changes during the scan, it does not matter too much if the peak is wide or imperfect

in ω; the integrated intensity is found by simply summing the area under the scan. However, if the

peak has extremely long tails or is extremely bumpy and wide, there will be problems in taking

the scans. Since the entire peak is needed for integration, it’s arbitrary where to stop taking data

when the tails are very long, since the level of the background takes a long time to reach. With

such a scan, the amount of background is not known. This makes subtraction harder, which must

be done using background scans taken when the crystal is melted.

The last thing to consider when determining the crystal’s quality is the profile of a χ scan.

Since χ is stationary during a rocking curve, the χ scan width shouldn’t be very wide. The width of

the peak is caused by fragments of the crystal having slightly different orientations, with the peaks

being at slightly different χ values. If the peak is larger than a degree, it probably won’t yield great

data. Normally, with peaks that big, the reflection has several sub-peaks to it, and the tails never

really seem to die off. There is also the danger with χ that the scanned peak is far enough away

from a different peak which is not be seen during a scan, but is close enough to confuse searches for

the peak corresponding to a certain sub-crystal. This case gets even worse for different reflections,

since the distance of the peaks in χ from one another changes, and they can actually overlap. If

the χ scan is not fairly clean, it is a smart idea to just start again.

G.8.2 Crystal Orientation Matrix

The goal of orientation is to find enough peak centers (and their associated angular values) that a

crystal orientation matrix can be set up. The matrix will then give the motor coordinates of any

other reflection specified. The matrix is manipulated through computer software, since it can be
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rather complex.

Ideally, three correctly identified reflections are used for creating a matrix. No two of these

reflections should be colinear through (0 0 0). These three reflections will determine values for the

crystal’s lattice parameters and Euler angles (see Appendix B.1). If they come out different from

what is expected, chances are that either the indices entered for one of the reflections are wrong,

or the reflections are coming from two different crystals.

Only two reflections can be used to create the matrix, if the Euler angles and the estimated

lattice parameters are given. In this case, the reflections only determine the crystal orientation.

This is simpler since only two reflections need to be found, but the three reflection method is

superior since it automatically shows you if the peaks found are usuable.

In practice, two reflections are first found using the brute force method (described in Ap-

pendix G.8.3). A matrix is then made from the motor values and the theoretical crystal structure

information. This helps finding a third reflection, which should be bright and have a low Q. It still

needs to be found using the same brute force method as before, since this rough matrix gives only

approximate coordinates for the reflection. Once the third reflection is centered, all three reflections

are used to create a new matrix based only on the direct experimental data. The validity of the new

matrix needs to be checked, comparing the resultant crystal characteristics against the expected

ones. If there is a problem, it has to be fixed.

At this point, the matrix is hopefully good enough to start predicting the next higher Q

reflection’s position. The motors should be moved to the position that the matrix predicts for the

next reflection. The fine centering procedure (described in Appendix G.8.3) should then be done,

until the peak is found and centered. A new matrix is then made, utilizing this new reflection,

which is more refined than the last. This process is repeated for more reflections, although a new

matrix doesn’t need to be made after every peak once the matrices become somewhat accurate.

At some point, the reflections are so weak that even with a good matrix, a good deal of

tweaking with the motor values is needed before any sign of a peak is seen. At these large values of

Q, small background peaks can be easily mistaken as reflections if they are close to the predicted

position.

There is a way to get certain high Q peaks quickly, in order to make a better matrix faster. It

starts with a low Q peak, of some order m as expressed by (mh mk m`), which has related n-order
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peaks of the form ( (n/m)h (n/m)k (n/m)` ), some of which are allowable by the structure factor;

both n and m are non-zero integers. An n peak has the same χ value as the m peak. The ω and

2θ values for the n peak are derived from the m peak by the relations

ωn = ωm + δ and 2θn = 2θm + 2δ ,

where δ is an angular parameter. This means that the n peak can be found by making a radial

scan; a scan where, for each step, 2θ moves twice the angular distance that ω moves. An easier

way to find these peaks is to consider Bragg’s Law; since the n and m peaks come from the same

sets of planes, the lattice spacing d used for both peaks is the same. This means that

d =
mλ

2 sin(θm)
=

nλ

2 sin(θn)
resulting in sin(θn) = (n/m) sin(θm) ,

which gives θ for the n peak. The resulting values for 2θ and ω are then

2θn = 2 arcsin((n/m) sin(2θm/2)) and ωn = ωm + (1/2)(2θn − 2θm) .

Once the peak is then found, it has to be fine-centered.

This last method can’t be used to create an initial matrix from only one peak which was found

with the brute force method. As mentioned before, when created with two or three reflections, the

matrix can only use reflections that are not colinear through (0 0 0). This means that n and m

order peaks of the same lattice spacing can’t both be used; the peak with the highest Q should be

used. Once a matrix is created, both peaks can then be used.

G.8.3 Finding and Centering on Reflections

The whole brute force method of both rough and fine centering works for low Q only. This is

because it depends on taking pictures of the reflections, and these pictures capture only low Q

reflections. For higher Q reflections, the crystal orientation matrix is used to get a rough idea of

the peak’s center in terms of the motors; once the motors are set to the approximate position, the

method for fine centering is followed.
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Rough Centering

A Laue rotation picture is first taken of the crystal. A Polaroid [1] is mounted on the front end of

the detector arm, making sure it is straight and noting the orientation in which it is mounted. 2θ

is then set at around 20̊ , and ω is set to the lower bound of the scan. The shutter to the hutch

is opened, exposing the Polaroid to the diffracted X-rays. ω is moved to its upper bound and then

back. Depending on the flux of the incident beam and the speed of the motors moving ω, ω might

have to be moved back and forth several times. Once this is done, the shutter is closed and the

film is developed.

The Laue picture used is generated from the rotating crystal method (with stationary film) [2].

Since the X-ray beam is monochromatic and the sample is not polycrystalline, the chance of Bragg’s

Law being met for some set of planes is small. To compensate for this, the sample crystal is rotated,

allowing the angle between the beam and the lattice planes of the crystal to vary. At different times

and for different planes, Bragg’s Law is met, creating a spot on the film if the Polaroid is in the

diffracted beam’s path.

The picture should show beryllium rings with small white spots, which correspond to reflec-

tions. Knowing the 2θ values of the beryllium rings from the background picture taken earlier

(see Appendix G.6.2), the beryllium rings act as a guide for getting an approximate 2θ value for

any given spot. Also, knowing the pressure of the system, either directly from the Heise gauge

or indirectly through the freezing temperature and the use of thermodynamic relations, a molar

volume can be determined. Assuming that the phase of the crystal is known, this molar volume

can be used to get approximate lattice parameters for the crystal, which are then used to generate

a table of expected 2θ values for the reflections. With this information, it shouldn’t be hard to

identify the reflections that spots correspond to, unless the solid is close to an fcc-hcp transition

line, where the phase may need to be determined from the spot patterns. Once a spot is associated

with a reflection, the 2θ angle of this reflection is approximately known, and 2θ should be set

accordingly.

The spot of the desired reflection needs to be on a line running from the center of the rings

to the top of the picture (corresponding to the plane of the detector itself) or it won’t be seen by

the detector. The moving the of the spot to that line is done by moving χ. Using a protractor

and the beryllium rings as guides, the angle between this line and the reflection is measured. This
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resultant angle is the value that χ needs to be moved in order to get the reflection in the plane of

the detector. It is important to remember the orientation of the picture as it is mounted, and to

mount the Polaroid straight, in order to move χ in the right direction and by the right amount.

The last angle needed is the ω angle, but since the crystal was rotated in ω as the Polaroid

was exposed, the correct value could be any value of the rotation. There is a small chance that

a change in χ moved the reflection out of the ω range, but this is a small chance, and it can be

checked by simply taking a new picture at the new χ value.

When trying to find the correct ω, the detector slits are opened wide, the beam is let into the

hutch, and a ω scan is taken over the entire range that was used for the picture. Hopefully, a peak

of some size will be seen. Since the scan is in ω, not 2θ, any peak seen should be from the helium

crystal. If a peak is seen, ω is set to that value.

If a peak is not found, another way to find a rough value for ω is to put a fluorescent screen

at the entrance to the detector arm, mount a CCD camera that is aimed at the screen, turn off

the lights in the hutch, and then let the beam into the hutch. ω is varied over its range while

the fluorescent screen is watched. Hopefully, a bright flash will be seen where ω fulfill the Bragg

conditions; ω is then set to this value. This method can sometimes be helpful.

If the correct ω value is still not found, the next thing to do is make sure the peak is lined

up in χ correctly. This is done by taking another photo and checking the spot’s position. Another

scan in ω is done, looking for a peak. If one is still not found, both 2θ and χ need to be tweaked,

taking ω scans after each tweak. Eventually, the peak is found, and ω is set to that value.

At this point, the reflection is roughly centered.

Fine Centering

This procedure assumes that the peak of the desired reflection has been found, most likely during an

ω scan. It is assumed in the following discussion that anytime a peak is scanned, the corresponding

motor of the scan is set to the location of the peak’s maximum.

The detector slits should be opened wide at this point, such as 2 mm vertically and 5 mm

horizontally, with no attenuators in use yet. During the course of centering, the intensity will

increase in magnitude enormously. Attenuators will have to be inserted in order to keep the

detector from saturating, since oversaturation is harmful to the detector and the resulting output
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is unreliable. This will probably need to be done several times. With low Q peaks, a small change

in a motor’s position can instantly cause a several order of magnitude change in intensity, causing

the experimenter to quickly close the beamline shutter.

The first thing to do is to a quick scan in 2θ, again looking for a peak. The peak is very sharp

since 2θ directly depends on the lattice spacing; the peak should be around 0.05 degrees wide. This

should be done first, since a sharp gain in intensity normally results.

The next thing to do is take a χ scan, which is useful in determining the quality of a crystal.

Typically, peaks in χ are on the order of a degree. If the crystal is fractured, it will normally

appear in χ as two or more peaks; it is important to take a wide scan, since a larger peak may be

off to side of the current peak, which would indicate that the current peak belongs to a smaller

sub-crystal. Going to the larger peak is not automatically the thing to do, since the two sub-crystals

are misaligned enough such that the integrated intensity scans will probably not catch the intensity

of both peaks. If this is the case, the crystal might need to be abandoned. Even if the peak is

singular, if it is much wider than a degree, the crystal is probably worthless; normally, peaks this

large are actually the sum of several peaks, indicating a highly fragmented crystal.

An ω scan is then taken. Normally, this peak’s width is around 0.1 degrees for a single crystal,

and can be quite large if the crystal is fractured, being around a degree. A misshapen peak is not

a real problem, since it gets integrated when the measurement data is analyzed. If the peak is

misshapen, one thing to watch for are tails that seem to go forever; the width of the peak needs

to be small since the time it takes to make high quality rocking curves increases linearly with the

width of the peak. If the tails are very long, the crystal promises to be a great deal of trouble.

The final step calls for narrowing the detector slits for the final centering, to around 0.5 mm

by 0.5 mm. Three scans are then made, one for 2θ, χ, and ω as before, centering after each. The

resultant centered position is then the final value of the reflection’s position, to be used in the

orientation matrix.

G.9 Data Taking

Integrated intensity measurements are done by making a scan in ω; such a scan is called a rocking

curve.

For a given crystal and temperature, it is normal to take measurements for all found peaks. If
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there is not enough time, the best strategy is to take data for the highest and lowest Q reflections,

giving a wide range in Q, which gives the best slope for a linear fit.

Before taking the measurement for a reflection, the peak should be quickly recentered, in case

the position shifted. After this, the detector slits are opened wide (around 2 mm vertical and 5 mm

horizontal), which is required when taking an integrated intensity scan [3].

A quick scan in ω is taken in order to judge the limits of the peak, so the width of the final

rocking curve can be set. It is important to get all of the tails and some of the flat background;

this linear background is useful when the time comes to remove it. Also, an attenuator should be

inserted that allows the intensity at the peak’s center to be just under the detector’s maximum

desirable count rate; the signal should not be suppressed more than needed.

The rocking curve is then taken. The scan is taken with steps of 0.001 degrees for a narrow

peak, and with larger steps for wider peaks. The time gate used is around 2 seconds for low Q

peaks, 5 seconds for middle Q peaks, and 10 seconds for high Q peaks.

G.10 Background Measurement For Individual Scans

After the data measurements are all done and the crystal is melted, background measurements of

the cell need to be made at the same positions that the data scans were made. The measurements

need to be taken at just above melting temperature for the crystal, so as to not melt anything else

that may have crystalized inside or outside of the cell. Ideally, the background measurements are

taken immediately after the crystal is melted, so as to capture the exact conditions for the data

measurement. Over time, there is a possibility that something could freeze on the surface of the

cell or some other unforseen circumstance that would make the conditions different later.

A quick preliminary scan should be made. This is done in order to see if the background is

completely linear at that position, and also to make sure that the measured peak was not actually a

background peak. If the background is nonlinear at that position, a more detailed scan mimicking

the peak measurement is taken; this background scan is subtracted from the measurement scan

later.
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