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CHAPTER I

Introduction

Ultrafast x-ray diffraction has become a very powerful tool in studying structural

dynamics of solids. The wave nature of x-rays allows the detection of milliÅngstrom

changes in crystalline structure. Coupling the sensitivity of x-ray scattering with

the ultrafast techniques developed for optical systems can provide unprecedented

studies of ultrafast dynamics in solids. This thesis demonstrates how ultrafast x-ray

diffraction can be used to view transient strains in crystalline solids.

1.1 Coherent Phonon Generation and Detection

The fundamental unit of motion in solids is a phonon. Two flavors of phonons

exist in materials; optical phonons (motion of atoms within a crystalline unit cell) and

acoustic phonons (crystalline lattice motion). A coherent phonon can be generated

by using an optical pulse whose pulsewidth is shorter than one half the vibrational

period. Crystalline lattice dynamics are typically measured indirectly through optical

scattering techniques (i.e. Raman scattering). The time evolution of a coherent

phonon can be measured by introducing an optical delay between a pump and a

probe pulse (see figure 1.1).
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Probe

Pump

Figure 1.1: Typical optical pump-probe geometries.

The change in optical transmission and/or optical reflectivity is proportional

to the relative phase and amplitude of a coherent phonon. The study of picosec-

ond acoustic phonons first used the optical transmission technique [1] (see figure

1.2). Although transmission measurements are sensitive to lattice distortions, op-

tical transmission does not provide a localized measurement of phonons. In the

reflection geometry, however, the limited penetration depth of the incident light can

be utilized to measure localized strains. This method has been very successful in the

detection and measurement of ultrafast acoustic pulses [2, 3, 4, 5] (see section 2.2).

Recently these optical techniques have been extended to the study of optical phonon

generation [6, 7, 8] (see section 2.1).

Optical pump-probe techniques, though very successful, only provide indirect

structural information. Measuring the atomic positions directly is impossible since

the wavelength of optical radiation is orders of magnitude larger than the atomic

spacing in a crystal lattice. X-ray scattering, however, is a proven technique for
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Figure 1.2: Observation of coherent acoustic phonon oscillations by an optical time-
resolved transmission experiment. Adapted from [1]

providing precise information about atomic positions in crystalline lattices [9, 10, 11].

X-ray scattering is also sensitive to lattice motion if that motion is slow compared

to the natural timescale of x-ray diffraction (∼1fs).

1.2 Previous work in Time-Resolved X-ray diffraction

Experiments performed with coherent acoustic waves demonstrated the sensi-

tivity of x-ray diffraction to acoustic excitation[12, 13, 14, 15]. An accurate time-

resolved picture of the structural dynamics within solids can be obtained by com-

bining techniques developed for optical scattering and x-ray scattering. The early

time-resolved x-ray diffraction (TRXD) experiments utilized laser based x-ray sources

[16, 17, 18]. The hot dense plasmas generated by an ultrafast laser pulse provide a

mechanism to generate hard x-rays[19, 20]. The generated x-rays are as monochro-
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matic as the width of inner shell electron resonance, which for many diffraction

applications is sufficient.

1.2.1 Laser based x-ray sources

The first experiments to utilize this fast source of narrow band x-rays examined

the propagation of acoustic shockwaves generated by an ∼100ps optical pulse[16,

17]. The amount of lattice distortion imparted by the shockwave was inferred by

solving the x-ray wave equation at different times and comparing the calculation

to the observed diffraction patterns. These experiments demonstrate the ability of

time-resolved x-ray diffraction to detect and measure strong acoustic disturbances in

crystals. The time resolution was limited by the x-ray pulse length. Although ∼100ps

is able to measure shockwave propagation, it is still several orders of magnitude slower

than natural timescales of atomic motion in solids (typically 0.01-10ps).

To generated a sub-picosecond source of x-rays, faster more intense optical radia-

tion is required. Ti:Sapphire modelocked oscillators and chirped pulse amplification

(see section 4.3) can generate optical pulses with sub-picosecond pulse lengths and

pulse energies of many milliJoules. These laser systems have the potential to gen-

erate ultrafast x-ray pulses (subpicosecond) which can enable the study crystalline

disturbances on the natural timescales of nuclear motion[21, 20, 22]. This ultrafast

source of x-rays has been used to study the mechanism of rapid heating in crystals.

Rapid heating of the crystal surface can dramatically alter the x-ray diffraction pat-

terns. Rischel et al. [23] showed that if a thin film is rapidly heated the efficiency

of a Bragg reflection is reduced on a picosecond timescale (figure 1.3). The data
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Figure 1.3: Time-resolved rocking curves of a crystal undergoing ’non-thermal melt-
ing’. The curves presented are the difference between the heated lattice
and the static lattice. Adapted from [23].

were interpreted as ’non-thermal melting’, or the loss of the long range order on

a supersonic timescale. Siders et al. [24] demonstrated a similar effect in a bulk

crystal.

Simple heating is an incoherent process. The study of phonon dynamics requires

a coherent lattice vibration. Thomsen et al. [2] described an efficient method of

generating a coherent acoustic pulse (see section 2.2). As the incident laser power is

reduced to below the melt threshold, a coherent acoustic phonon can be generated.

This coherent lattice motion changes the x-ray diffraction patterns over time [19,

25, 26] (see figure 1.4). With the help of dynamical diffraction theory (see chapter

III), the coherent acoustic pulse was compared to the Thomsen model of ultrafast
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Figure 1.4: Time-resolved rocking curves of an impulsively generated acoustic pulse.
(a) is data using a laser-plasma x-ray source, (b) is a dynamical theory
calculation based on the Thomsen model of acoustic strain generation,
and (c) the best fit acoustic pulse found by a fitting algorithm. Adapted
from [19].

acoustic pulse generation.

The laser based experiments, while ground breaking, have some systematic draw-

backs. First, the x-rays generated from a laser based plasma source radiate in all

directions. The divergence poses significant problems in the collection of useable

x-ray photons. Second, in many materials that are used to generate x-rays, there are

multiple emission lines in a very narrow energy range. The lack of monochromaticity

interferes with the precise interpretation of the x-ray diffraction patterns. In the

studies on acoustic pulse propagation, for example, the compression component of

acoustic pulse is not immediately apparent because of the two nearby emission lines

(see figure 1.4)[19]. An x-ray synchrotron source is designed to compensate for these

two systematic problems.



7

1.2.2 Time-Resolved Studies at synchrotron Sources

X-ray synchrotrons can generate a large number of hard x-ray photons without

the divergence problems associated with laser based x-ray sources. The use of simple

x-ray optics, which can make the x-rays spectrally pure, can be utilized without

significantly deteriorating the average x-ray intensity (see chapter IV). The spectral

and spatial attributes of a synchrotron, however, come at a price. The x-ray pulse

width is limited by the accelerating electron bunches which generate the radiation,

which typically is 50-100ps in duration. There have been a number of advances which

extend the effective time-resolution of an x-ray synchrotron.

Larsson et al. [27]presented data which measured the time-resolved diffraction

efficiency of a laser heated crystal. A ∼1ps lattice change was measured using an

80ps x-ray pulses and a two crystal cross-correlation technique.

Direct manipulation of the synchrotron electron beam is also a potential source

of fast x-rays. Part of the electron bunch may be differentially excited by an ultra-

fast laser via Thomson scattering. The sub-picosecond excited electron bunch will

generate a sub-picosecond x-ray pulse[28, 20]. Chin et al. [29] used this method to

show that impulsively heated crystals could shift the energy of scattered x-rays by

the acoustic phonon energy.

The least invasive method of detecting picosecond structural changes in a long

x-ray pulse is an x-ray streak camera (see section 4.2.3). X-ray streak cameras map

the time-intensity distribution of an x-ray pulse. Averaging a series of x-ray pulses,

the maximum resolution of an x-ray streak camera is ∼2ps[30]. Lindenberg et al.
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Figure 1.5: Measured (solid line) and calculated (dashed) acoustic phonon spectra
using a picosecond x-ray streak camera. Adapted from [31].

[31] used an x-ray streak camera to measure the frequency spectrum of a coherent

acoustic pulse and compared the results to the theory developed by Thomsen et al.

[2] (figure 1.5).

These experiments, though novel, did not use the full resources of a synchrotron.

This thesis reports the ability to meld ultrafast pump-probe techniques with the

monochromaticity of synchrotron x-pulses. The study of acoustic pulses is expanded

to include a full spectrum analysis of the generated acoustic pulse as well as the

study of the long term (microsecond) evolution of acoustic pulses in crystals. The

data demonstrates that the Thomsen model of strain generation and propagation

does not predict all of the observed x-ray diffraction patterns in laser heated crystals

(chapter V). This thesis will also demonstrate novel experiments that utilize Laue

diffraction to study strain propagation (chapters VI and VII). In the same way that
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optical pump-probe techniques were extended to THz regime, the x-ray pump-probe

techniques developed and demonstrated in this thesis could be extended to the study

of coherent optical phonons and other ultrafast phenomena.



CHAPTER II

Ultrafast Lattice Motion

For decades the study of phonons was limited to the frequency domain. Stable

sources of ultrafast optical pulses allows the generation and study of coherent phonon

oscillations in the time-domain. Ultrafast lattice dynamics is split into two distinct

regimes; high frequency (optical phonons) and low frequency (acoustic phonons).

Although the same laser can generate both coherent optical and coherent acoustic

phonons simultaneously, the mechanism for their generation is vastly different.

2.1 Coherent Optical Phonon Generation

Optical phonons are the vibrational modes of a crystalline unit cell. The fun-

damental frequencies of these oscillations range from 1-10’s THz depending on the

bonding strengths and the mass of the atoms within the atomic lattice. Stimulated

Raman scattering is a standard method by which an optical phonon mode may be

excited. Two light sources, whose frequency difference is equal to the optical phonon

frequency, transfer energy to the specific phonon mode. If the two light sources are

mutually incoherent, then the relative phase of the oscillations within neighboring

unit cells is random and thus the phonon is said to be incoherent. If, however, the

10
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Figure 2.1:
The spectrum of an ultrafast optical pulse. The bandwidth is large
enough to excite a coherent 400 cm−1optical phonon mode.

Raman transition takes place within one half a phonon period, all the unit cells can

be excited with the same relative phase and thus the phonon is said to be coherent.

Experimentally, a coherent optical phonon can be generated using an optical pulse

whose pulse width is less than one half an optical phonon cycle. In this case the

optical pulse possesses enough frequency bandwidth to satisfy the Raman transition

(see figure 2.1). This method of exciting a coherent phonon mode is called Impulsive

Stimulated Raman Scattering (ISRS)[32, 8].

2.1.1 Impulsive Stimulated Raman Scattering

ISRS has been used to generate coherent optical phonons in many systems, from

insulators to semi-metals[6, 7, 33, 32, 8]. Many materials have atomic unit cells con-

sisting of many atoms of various species and bond strengths. This diversity makes

the Raman spectrum of these materials very complicated in the number and energy

of the excited phonon modes. If an ultrafast optical pulse has enough bandwidth
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Figure 2.2: Time-resolved phonon spectra of a single BGO crystal. Inset: Fourier
transform of the phonon oscillations.

and short enough pulse length, ISRS can excite many of the phonon modes simulta-

neously. Bi3Ge4O12 (BGO) is such a system.

Figure 2.2 shows the time-resolved phonon oscillations in BGO excited by a 50fs

optical pulse using ISRS. The phonon spectrum indicates the single optical pulse

excited at least 6 coherent modes. The lifetime of these individual modes depends

on the ’Q’ of the particular phonon mode. After a few phonon cycles the only

remaining mode is the 90 cm−1.

Using multiple pump pulses it is possible to generate a set of optical phonons that

have a specific phase relationship. Since the phonons are coherent, by generating
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Figure 2.3: Coherent control of optical phonon mode in single crystal bismuth. (a)
Single pulse excitation. (b) Double pulse excitation; constructive inter-
ference. (c) Double pulse excitation; destructive interference. Adapted
from [36].

multiple phonons it is possible control the amplitude, phase, and specific mode that

is excited. For a system that has only one observable phonon mode, two optical

pulses are sufficient to achieve full control of the phonon [34, 35, 36](see figure 2.3).

More complicated systems require more degrees of freedom to control the lattice

vibration. In figure 2.4 a semi-metal crystal consisting of a mix of antimony and

bismuth has three accessible phonon modes [35]. As seen from the phonon spectra,

a series of optical pulses can quench or amplify a specific Raman mode.

2.1.2 Amplitude of coherent lattice vibrations

The standard method of detecting coherent lattice vibrations is to measure the

transient surface reflectivity or transient bulk transmission. The local index of re-

fraction of the material changes as the coherent phonon oscillates leading to a change

in the optical transmission and optical reflectivity. Since the index of refraction is

a measurement of local crystal density, these optical techniques represent an indi-
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Figure 2.4: left: Coherent control of three phonon modes in antimony-bismuth semi-
metal blend. right: the corresponding fourier transforms. Adapted from
[35].

rect measurement of atomic motion in solids. Using the mathematical formalism

of Raman scattering, however, the absolute amplitude of the lattice motion may be

estimated.

Assuming that the optical phonon mode is harmonic, the generated phonon field

at a crystal surface due to an impulsive optical pulse is given by[32]:

Q =
1

Ω0

∫ ∞

−∞
dω

E(ω)E∗(ω ± Ω0)�Q(ω, ω ± Ω0)

η(ω)η(ω ± Ω0)
(2.1)

where E(ω) is the incident electric field, Ω0 is the optical phonon frequency, and �Q

is a Raman tensor which can be approximated in terms of the complex dielectric

constant[37, 38]:

�Q(ω, ω ± Ω) ∼ D
ε∗(ω) − ε(ω ± Ω)

±Ω
(2.2)

where D is some deformation potential and η(ω) is defined in terms of the complex

index of refraction:
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η(ω) ≡ 1 + n(ω) + iκ(ω) (2.3)

If the optical properties of the crystal are known, an estimate of the phonon

amplitude may be obtained. In a semi-metal, for example, the amplitude of the ion

motion is approximated by (see appendix A)[36]:

U2
0 ∼

(
∆R

R

)
Q

377F
ρν0|ε| (2.4)

where U0 is the ion displacement in Å, 377 is the vacuum impedance, F is the incident

fluence of the excitation pulse in mJ/cm2, ρ is the density of the material in amu/Å3,

and ν0 is the phonon frequency in THz.

A coherent lattice vibration as large as 1% the equilibrium lattice condition can

be inferred from optical reflectivity data (figure 2.5) and equation 2.4. Although the

atomic motion of optical phonons can be quite large, the momentum associated with

an optical phonon is only as large as the bandwidth of the generating laser. Coherent

strain pulses, however, can possess momentum with very large amplitudes.

2.2 Bulk Crystal Strain

The response of a crystal upon a feeling a force is defined as the stress. The

equations of motion for crystal in one dimension can then be defined as [39]:

ρ
∂2uk

∂t2
=

∂σki

∂xi

+
∂σkj

∂xj

+
∂σkk

∂xk

(2.5)
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Figure 2.5: Time-resolved reflectivity change of the impulsively generated optical
phonon in bulk bismuth. Adapted from [36]

Where ρ is the crystal density. If a strain is defined as the differential atomic dis-

placement:

ηii =
∂ui

∂xi

(2.6)

ηij =
∂uj

∂xi

+
∂ui

∂xj

(2.7)

then the equations of motion may be defined in terms of the strain. If the crystal

displacement is small, then the crystalline strain will be directly proportional to the

stress (i.e. Hooke’s Law). Therefore the strain tensor may be defined as:


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







σ11

σ22

σ33

σ23

σ13

σ12




=




η11

η22

η33

η23

η13

η12




(2.8)

where σ13 = σ31,σ23 = σ32, and σ12 = σ21 because of symmetry and the coefficients

of the matrix of the elastic moduli of the material [39].
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Direction Ceff

[100] C11

[110] 1
2
(C11 + C12 + 2C44)

[111] 1
3
(C11 + 2C12 + 4C44)

Table 2.1: Table of elastic moduli of a longitudinal sound wave in various direction

In cubic crystals, the elastic moduli tensor may be simplified to the following

matrix: 


C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




(2.9)

thus for a strain along in the ui direction, the equations of motion become:

ρ
∂2ui

∂t2
= C11

∂ηii

∂xi

+ C12

(
∂ηjj

∂xi

+
∂ηkk

∂xi

)
+ C44

(
∂ηij

∂xj

+
∂ηki

∂xk

)
(2.10)

Using equations 2.6 this equation may be reduced to:

ρ
∂2ui

∂t2
= C11

∂2ui

∂x2
i

+ C44

(
∂2ui

∂x2
j

+
∂2ui

∂x2
k

)
+ (C12 + C44)

(
∂2uj

∂xi∂xj

+
∂2uk

∂xi∂xk

)
(2.11)

If it is assumed that the there is a longitudinal strain wave in the material (u =

u0e
i(Kx−ωt)) the sound speeds in various directions may be defined. Substituting

the strain wave into the equation of motion the following equation is found ω2ρ =

CeffK
2. For a longitudinal strain, the sound speed is represented by

√
Ceff

ρ
assuming

a linear acoustic dispersion relation. The Ceff for various crystalline directions is

given in table 2.1.
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2.2.1 Ultrafast Strain Generation

Crystalline strain can be generated in many different ways; Ion bombardment,

multiple quantum wells, etc. Strains with central frequencies in the MHz regime

can propagate by exciting an electric transducer at the crystal surface [12, 14, 15].

The absorption of ultrafast optical pulses may generate coherent strains with central

frequencies in the GHz regime.

Thomsen Model

Thomsen et al.[2] presented a simple model which describes the generation and

propagation of a laser induced coherent strain pulse. In optically opaque crystals, a

significant amount of optical radiation can be absorbed on the crystal surface. This

absorption will cause the surface temperature of a crystal to increase. Assuming that

the illuminated area is large compared to the square of the optical absorption depth,

η, the amount of energy deposited per unit volume at a distance z into the crystal

bulk is given by:

W (z) = (1 − R)
F
η

e−z/η (2.12)

where R is the surface reflectivity and F is the incident optical fluence. If the

electron-phonon relaxation time is extremely fast (in semiconductors this typically

is ∼1ps), a thermal gradient will be generated almost instantaneously:

∆T (z) =
W (z)

C
(2.13)
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where C is the specific heat per unit volume. The generated temperature differential

produces a thermal stress in the ẑ direction:

−3Bβ∆T (z) (2.14)

where B is the bulk modulus of the material and β is the linear expansion coefficient.

Since the stress is only in the ẑ direction the only nonzero component of the strain

tensor is η33 = ∂u3

∂z
. The thermo-elastic equations of motion (equation 2.5) can then

be simplified:

ρ
∂2u3

∂t2
=

∂σ33

∂z
(2.15)

where σ33 is the component of stress tensor in the ẑ direction given by:

σ33 = v2ρη33 − 3Bβ∆T (z) (2.16)

where v is the longitudinal sound velocity in the material and the harmonic response

of the material is represented by the first term. Thomsen et al. presented a solution

to equation 2.15 with the assumption that initially the strain is zero everywhere and

that the stress is zero at the crystal surface (z = 0):

η33(z, t) = (1 − R)
Fβ

ηC

v2ρ

3B

[
e−z/η

(
1 − 0.5e−vt/η

) − 0.5e−|z−vt|/ηsgn(z − vt)
]

(2.17)

Equation 2.17 represents a lattice strain with two separate components; a static

thermal layer and a coherent acoustic pulse. By calculating the strain as a function

of crystal depth for a few time steps, this partitioning of acoustic energy becomes

clear (see figure 2.6). Optical scattering experiments have shown that this model

is qualitatively correct[1, 2] (see figure 2.7). It is impossible, however, to get a
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Figure 2.6: Calculated strain profiles at four different time delays using the Thomsen
model.

measurement of the absolute lattice strain as well as the absolute partitioning of

energy using optical scattering techniques.

Although the Thomsen model is analytically sound, the solution uses some physi-

cal assumptions that are inconsistent with ’real’ world behavior. The discontinuity in

the center of the acoustic pulse, for example, is due to the instantaneous generation

of the thermal strain. In reality, this generation is governed by the electron-phonon

coupling time, which for many semi-conductors is ∼10ps[19, 29, 31]. Incorporating

the electron-phonon coupling into the Thomsen strain is equivalent to the smoothing

of the discontinuity in the spatial domain or a Fourier filter in the frequency domain.

To incorporate this spatial and temporal smoothing, the sgn function in equation

2.17 is replaced with a hyperbolic tangent[40].

The Thomsen model also assumes that the acoustic pulse shape does not distort

with propagation. This assumption is valid only if the acoustic frequencies are rela-
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Figure 2.7: Time-Resolved reflectivity measurements of an impulsively generated
acoustic pulse. Adapted from [2].

tively small and ω = ck. However, if higher frequency acoustic phonons are generated

the acoustic dispersion relation may include higher order terms, ω = ck − γk3[3].

The consequence of higher order terms in the acoustic dispersion relation is that

the acoustic pulse will spatially disperse by an amount:

xγ

c(∆x)2
(2.18)

where ∆x is the initial spatial extent of the acoustic pulse, which in the Thomsen

model is ∼ 2η. Physically this dispersion becomes significant when the acoustic pulse

travels at least a distance x such that:

x =
c(∆x)3

γ
(2.19)

For ultrafast acoustic pulses generated in Ge (γ ∼ .85−11cm3s1 [3]) the length scale

where acoustic dispersion becomes important is ∼35m.
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Other Methods of Generating Ultrafast Strain

The Thomsen model is not the only theory of generating a time-dependent strain

with an ultrafast laser. Akhmanov and Gusev[41] present a generalized study of

laser generated ultrafast acoustic pulses. Two other prevalent methods are described

here which have relevance to this work; Electron-hole plasma diffusion and acoustic

shockwaves.

Plasma Diffusion

When a large dense electron-hole plasma is generated at a crystal surface, bound-

ary conditions require that the generated gradient must be relieved. The amount of

particle flow is determined by the density gradient of the system[39].

J = −D∇n (2.20)

where J is the particle current, D is the diffusion constant, and n is the density of

particles in the system. This equation is called Fick’s Law. If the continuity equation

is maintained:

∂n

∂t
+ ∇ · J = 0 (2.21)

the following time-dependent diffusion equation may be derived:

∂n

∂t
= D∇2n (2.22)

If the density gradient is initially given by a delta function, the time-dependent

density may be given of the form[42]:

n(x, t) = (4πDt)−1/2 e−x2/4Dt (2.23)
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Figure 2.8: Time dependence of ultrafast carrier diffusion. Black 40ps, Red 100ps,
and Green 200ps.

If n represents a dense electron-hole plasma, the evolution of this plasma will be gov-

erned by the equation above. Figure 2.8 shows the time-dependence of the electron-

hole plasma assuming that initial carrier density is a delta function.

Assuming that the strain field is generated by the electron-hole plasma, the prop-

agation of the strain field is not limited by the sound speed, but rather the speed of

the electron-hole diffusion. The time evolution of this strain is completely dependent

on the diffusion constant of the material, which for low carrier densities is constant.

Young and van Driel [43] showed that large carrier densities (1019cm−3) can radically

change the diffusion constant and thus the time dependence of the carrier diffusion

(see figure 2.9). For typical incident laser fluences (1-10 mJ
cm2 ), carrier densities are

∼ 1020cm−3. In this fluence range, the diffusion constant should change linearly

with optical fluence. This implies that the time-dependence of the diffusion will also
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Figure 2.9: Carrier diffusion constant as a function of carrier density in Ge. Adapted
from [43].

change with the incident optical fluence.

Shockwaves

Another method of generating strain is the generation of a supersonic shockwave.

When material is ablated from a solid, momentum conservation requires that the

crystal lattice will undergo a compression [16, 17]. If the ablation is performed using

an ultrafast laser source, the resulting compression wave can induce a supersonic

strain that propagates into the bulk.

2.3 Coherent folded acoustic phonons

The methods of phonon generation described in the previous sections have limi-

tations. Optical phonons generated by ISRS possess very small wave vectors while

the acoustic phonon generation had frequencies limited to ∼100GHz. Folded acous-
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Figure 2.10: Coherent Folded acoustic phonons in a semiconductor superlattices.
Adapted from [46, 44].

tic phonons are a combination of these two techniques; high wavevector coherent

vibrations that have frequency components as large as 1THz.

Excitation of crystalline superlattices by an ultrafast optical pulse can cause the

superlattice to vibrate coherently. The frequency of these coherent oscillations are

given by the elastic response of the material and the multilayer periodicity. Frequen-

cies as large as 1THz have been generated in standard superlattices (figure 2.10). Like

optical phonon oscillations, it has been shown that vibrations within the multilayer

are generated via ISRS[44, 45].



26

These coherent phonons have a complicated momentum structure. There are

three prevalent modes; one corresponding to q = 0 and two corresponding to q =

±2klaser. The large momentum phonon modes are attributed to Raman stimulation

in a backscattering geometry [44]. The frequency of these large momentum sidebands

is determined by the dispersion relation of the system:

ω2 =
C11

ρ
(q + G)2 (2.24)

where G is the reciprocal lattice vector of the superlattice. Because these acoustic

phonons are coherent, like the coherent optical phonons the relative motion and

amplitude of the superlattice may be controlled[47, 48].



CHAPTER III

Theory of Dynamical Diffraction

The study of x-ray diffraction is spilt into two regimes; the kinematic regime

where x-ray absorption is not important, and the dynamical regime where x-ray

absorption must be taken into account. Kinematic diffraction uses the constructive

interference of plane waves to predict diffraction patterns (see figure 3.1). Bragg’s

law can be derived from this constructive interference:

2d sin θ = λ (3.1)

In many cases kinematic theory can correctly predict diffraction patterns. For the

case of ’thick’ perfect crystals, however, the diffraction patterns are governed by

the theory of dynamical diffraction due to the non-negligible x-ray absorption. The

mathematical formalism of dynamical diffraction theory is found by solving Maxwell’s

equations in a periodic medium.

3.1 X-ray Dispersion Surface

When an x-ray photon of certain momentum enters a periodic lattice, the x-

rays will be deflected at an angle determined by the momentum of the crystalline

27
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Figure 3.1: Kinematic diffraction

lattice (reciprocal lattice vector). Von Laue derived a scattering equation based on

momentum conservation:

kH = k0 + G (3.2)

where k0,H is the momentum of the incident and diffracted x-ray ray photon and

G = 1
d

is the reciprocal lattice vector corresponding to a particular set of lattice

planes. In the limit of elastic scattering, the Laue equation is an equivalent statement

to Bragg’s law but in ’reciprocal’ space. In general, the incident and diffracted wave

vectors are complex to account for absorption.

The Ewald construction is a graphical representation of the Laue equation[49].

A sphere is constructed of radius 2π/λ centered on a specific reciprocal lattice point

’O’(see figure 3.2). This sphere represents the possible momentum vectors of an x-ray

photon of wavelength λ. The Ewald construction is completed by choosing a second
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Figure 3.2: The Ewald construction and the X-ray dispersion surface.

reciprocal lattice point, ’H’, and constructing another sphere of radius 2π/λ. If

|4π/λ| ≥ |G| then the two spheres will intersect at the Laue point (’L’) in reciprocal

space. The triangle defined by the points O, H, and L graphically represent the Laue

equation, where the lines OL, LH, and OH defines kO, kH , and G respectively.

The Ewald construction provides a simple, yet effective method of predicting the

locations of x-ray reflections in reciprocal space. Near a diffraction peak, however,

the Ewald construction is an incomplete physical description. To model the system

accurately, the three dimensional periodicity of the atomic locations must be taken

into account. The solutions to Maxwell’s equations in a three dimensional crystal

lattice will govern the wave propagation inside a crystal. Batterman and Cole[50]

provide an efficient method of solving for the field amplitudes inside a crystal.
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3.1.1 Solutions to the x-ray wave equation

Maxwell’s equations for the propagation of electro-magnetic waves can be written

in the form:

∇× E = −∂B

∂t
(3.3)

∇× H =
∂D

∂t
(3.4)

where:

D = ε0(1 + ψ)E (3.5)

and where ψ is the complex dielectric constant of the material. Assuming the crystal

has a spatially periodic index of refraction, the solutions to Maxwell’s equations are

Bloch functions [49, 39, 51, 52]:

A =
∑
H

AHeiωt−2iπkH ·r (3.6)

where A can be any of the components of the electro-magnetic field (D,E, or B).

The sum represents a sum over all reciprocal lattice points. Incorporating equation

3.6 into equations 3.3 and 3.4 a system of equations can be obtained (see appendix

B):

kH × (kH × EH) = −ω2/(4π2)DH (3.7)

where equation 3.7 holds for all H.

If a single Laue point is excited, it is reasonable to assume that only two fields

are dominant inside the crystal (the forward and deflected). If this assumption

holds, equation 3.7 can then be reduced to a relatively simple quadratic equation
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(see appendix B) .

ξ0ξH =
1

4
k2P 2ψHψH̄ (3.8)

where:

ξ0 ≡ (k0 · k0)
0.5 − k(1 +

1

2
ψ0) (3.9)

ξH ≡ (kH · kH)0.5 − k(1 +
1

2
ψ0) (3.10)

where k is the wavevector of the incident light and P=1 for σ polarization and

P = cos 2θ for π polarization. Equation 3.8 is known as the dispersion surface.

The difference between the interior wave solutions and the incident wavevector

(corrected for the average index of refraction) is ξ0,H . ξ0,H can be represented as a

function of incident x-ray angle (see appendix C):

ξ0 = 0.5k|P ||b|0.5Γ[FHFH ]0.5[η ± (η2 +
b

|b|0.5
)0.5] (3.11)

ξH = 0.5k|P | Γ

|b|0.5
[FHFH ]0.5[η ± (η2 +

b

|b|0.5
)0.5]−1 (3.12)

where b ≡ γ0

γH
(b > 0 Laue geometry, b < 0 Bragg Geometry), γ0,H represent the

component of the incident and diffracted beam along the surface normal, and

η ≡ [b∆θ sin 2θ + 0.5ΓF0(1 − b)]/Γ|P ||b|0.5Γ[FHFH ]0.5 (3.13)

where θ represents the crystal angle, Γ ≡ reλ2

πV
, and F0,H is the structure factor for

the forward and deflected waves. Physically η represents the angular deviation of

the incident x-ray from the Bragg condition.

The structure factor represents the scattering power of the reflection. In a mate-

rial with a periodic electron charge density, ρ(r), the structure factor may be defined
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as:

FH =

∫
V

ρ(r)e
2πiG·rdv (3.14)

Assuming that the charge density can be represented as a small rigid sphere, the

structure factor can be represented by a discrete sum:

FH =
∑

n

fne2πiG·r (3.15)

where fn is the complex atomic scattering factor for the nth lattice point. In the

case of thermal vibrations the atomic scattering factor is modified by the Debye-

Waller factor, fn ⇒ fne
−Mn . Physically the structure factor represents the number

of scattering electrons for a given reciprocal lattice vector, the larger the number

of electrons the stronger the reflection. In a inversion symmetric crystal FH = FH ,

however this is not generally the case.

The locus of points that satisfies equation 3.8 are represented by two hyperboloid

sheets in reciprocal space called the dispersion surface (see figure 3.2). Since the

crystal has a different average index of refraction than the vacuum, Snell’s law dic-

tates that the center point of the dispersion surface is not the vacuum Laue point

(’L’). The magnitude of the shift is given by the average index inside the material.

By convention, the sheet closest to the Laue point is called the α solution, while

the other sheet is called the β solution. To determine the specific wave fields that

propagate inside the crystal, the excited points of the dispersion surface must be

known.

Figure 3.3 graphically demonstrates the method of determining the excited points

on the dispersion surface. The vector PO represents the incident wave vector of
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Figure 3.3: The X-ray dispersion surface in the Laue geometry

the x-rays and the value |LP |/k represents the angular deviation from the Bragg

condition. A vector n, defined as the crystal surface normal, is drawn through point

P such that is slices through the dispersion surface. The excited points (’tie points’)

are the locations at which the vector n crosses the dispersion surfaces. The vectors

connecting the tie points to the points O and H correspond to the allowed wavevectors

for the two solutions, called α and β. These wavevectors will physically manifest

themselves outside the crystal as a forward diffracted wave and deflected diffracted

wave.

The α solution represents an x-ray standing wave in the transverse spatial direc-
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Figure 3.4: A graphical representation of the fields inside a crystal. The blue and
red lines represent the α and β solutions respectively.

tion such that the nodes of the x-ray field lie on regions of high electron density (i.e.

the lattice planes). The α solution does not experience much attenuation since the

x-ray attenuation is dominated by photo-electric absorption. This solution represents

x-ray anomalous transmission. The β solution is spatially phase shifted with respect

to the α solution such that the anti-nodes lie on regions of high electron density (see

figure 3.4). The β solution will be greatly attenuated and thus represents enhanced

absorption. At the output of the crystal the α and β solutions spilt into the relevant

ratio of the exterior solutions.

Along with the two exterior wave solutions, in the Laue geometry there exists a

third transmitted beam (see figure 3.5). This beam corresponds to the ’real’ trans-

mission beam (a beam that is not deviated by the diffracting crystal). When the

crystal is optically thick, the forward beam and the transmitted beam can be spa-

tially separated.

The ratio of the exterior field amplitudes may be calculated after determining

which tie points are excited . Using the definition of ξ and equation B.14 the following
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relationship is derived:

EH

E0

=
−2ξ0

kPψH̄

=
−kPψH

2ξH

(3.16)

An analytic solution for the two propagating waves can be found by using equation

3.16 and implementing the relevant boundary conditions (see appendix C). In the

Laue geometry (b > 0), the corresponding boundary condition is that all of the

incident x-ray flux is in the forward direction:

E0 = E0α + E0β

0 = EHα + EHβ

where E0α,E0β,EHα and EHβ are the incident and diffracted wave solutions in the α

and β directions respectively. The resultant propagating solutions are:

E0α = CE0e
−νe−2πi((K

′
0α+iK

′′
0α)·r) (3.17)

EHα = −CDE0e
−2πi((K

′
Hα+iK

′′
Hα)·r) (3.18)

E0β = CE0e
−νe−2πi((K

′
0β+K

′′
0β)·r) (3.19)

EHβ = CDE0e
−2πi((K

′
Hβ+iK

′′
Hβ)·r) (3.20)
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Figure 3.6: Diffraction efficiency of the forward (blue) and deflected (red) beams as
a function of depth.

where:

C =
e2πivt

2 cosh ν

D =
|P |
P

|b|0.5 [FHFH ]0.5

FH

K
′
(K

′′
) are the real (imaginary) components of the x-ray wavevector and sinh ν ≡ η.

3.1.2 The Pendellösung and Borrmann Effects

The intensity of a diffracted beam in the Laue geometry oscillates with a char-

acteristic frequency as a crystal thickness changes (see figure 3.6). This is called

the Pendellösung effect. The Pendellösung effect arises from the fact that the two

solutions to x-ray dispersion surface (α,β) experience a slightly different index of

refraction. As the crystal thickness increases, the phase accumulation between the

α and β solutions changes causing a beating in both the transmitted and diffracted

intensity. The characteristic beat frequency is directly related to the momentum
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Figure 3.7: The Pendellösung depth as a function of crystal angle of the symmetric
220 reflection in Ge

difference of the two diffracted wave vectors, given by the inverse of the spacing

between the tie points on the dispersion surface:

Γ =
1

K0α − K0β

=
πV

√
γ0γH

reλ
√

FHFHP cosh ν
(3.21)

From equation 3.21 it is seen that the Pendellösung frequency changes as deviation

from the Laue condition changes (see figure 3.7). The oscillations, however, decay

rapidly as the crystal thickness grows (see figure 3.6). This decay is due to the

enhanced absorption of the β branch. When the β branch has been completely

absorbed, the oscillations cease, and only the diffracted x-rays from the α branch

survive. This is x-ray anomalous transmission.

In figure 3.8 the field intensities of both the forward and deflected beams of the

symmetric 220 reflection in a 280µm Ge [100] crystal are shown. As the crystal

thickness is increased, the angular extent of the diffraction pattern shrinks due to

absorption. The angular dependence of the x-ray anomalous transmission is given in
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Figure 3.8: A two dimensional false color image of the calculated transmitted (top)
and deflected (bottom) beams of a Ge [100] crystal as a function of
diffraction angle and crystal depth.

the thick crystal case by[9, 50, 10]:

I

I0

=
1

4

1

1 + η2
(3.22)

For thick perfect crystals, the peak diffracted intensity is one quarter that of the

input beam since one half of the input beam, the β solution, has been absorbed.

3.1.3 Bragg Geometry

In the Bragg geometry the interpretation of the x-ray dispersion surface changes

slightly (see figure 3.9). This case it is possible to create an incident wavevector

that does not cut through the dispersion surface. This physically means that a valid
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interior wave solution does not exist and hence the x-rays do not propagate into the

crystal. In the special case of zero absorption, these wavevectors will be completely

reflected out of the crystal.

As the incident x-ray wavevector changes and starts to intersect the dispersion

surface, the propagating wave solutions becomes a possibility. In general there are

two excited tie points on the dispersion surface. One of the two tie points represents

an interior wave solution that grows exponentially with distance. This is clearly not

a physical solution leaving only one excited point on the dispersion surface[50]. The

reflection coefficient in this regime is determined by using equation 3.16:

(
EH

EO

)2

=
ξOFH

ξHFH

= |b|(η ± (η2 − 1).5)2FH

FH

(3.23)

This is equivalent to the equation that Darwin determined for a perfect reflection

(figure 3.10)[9]. The flattop response of the Bragg reflection is a consequence of the
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Figure 3.10: Darwin curve of Bragg reflection. (solid) no absorption, (dashed) ab-
sorption.

space between the dispersion surface and the lack of propagating wave solutions for

those incident wavevectors. The full width half max of the Bragg curve is called

the Darwin width (approximately equal to the spacing of the dispersion surface).

In the real world, the incident x-rays experience attenuation. Since the α and β

solutions experience different absorption coefficients, the diffraction pattern is slightly

asymmetric.

3.2 Takagi-Taupin Equations

The analytical tools presented in the previous section are only valid in the special

case of an unstrained perfect crystal. When a crystal has either defects or bulk strain,

Maxwell’s equations must be integrated numerically. The wave equation inside the
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crystal is a second order differential equation making integration computationally

intensive. Takagi[53, 54] and Taupin[55] independently simplified the second order

equation into a set of two coupled first order equations in the case of small lattice

strain.

As in the prior section, the Bloch solutions are propagated through Maxwell’s

equations. In the perfect crystal case, the phase term is relatively simple (∼ kH · r).

The addition of a small lattice distortion changes this phase term:

ΦH = k · r − G · u (3.24)

where u represents some local lattice distortion. If it is assumed that only two

fields are present in the crystal and that the local distortions are not too large, an

equation representing the displacement fields may be found. Keeping only the first

order terms, the resultant coupled first order differential equations (see appendix D):

iλ

π

∂DH

∂xH

= ψ0DH + ψHD0 − αHDH (3.25)

iλ

π

∂D0

∂x0

= ψ0D0 + ψHDH (3.26)

where

r = x0s0 + xHsH

s0 = λK0

sH = λKH

αH = 2(Θ − ΘB) sin(2ΘB)

ψ0 = −λ2re

πV
F0

ψH = −λ2re

πV
FH
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This set of equations is referred to as the Takagi-Taupin equations. In the special

case of no strain, it has been shown that the Takagi-Taupin equations simplify to

the x-ray dispersion surface [11].

In the Bragg geometry, the Takagi-Taupin equations can be simplified to a single

first order differential equation. Defining the variable

X =
DH√
bD0

(3.27)

Taupin[55] showed that the dynamical diffraction equations can be expressed as:

i
dX

dA
= (1 + ik)X2 − 2(y − ig)X + (1 + ik) (3.28)

where

A =
π|ψ′

H |z
λ
√|γ0γH |

ψ0,H = ψ
′
0,H + iψ

′′
0,H

z = depth

g =
(1 + b)ψ

′′
0

2|ψ′
H |
√

b

k =
ψ

′′
H

ψ
′
H

y =
(1 + b)ψ

′′
0 − bαH

2|ψ′
H |
√

b

This linear equation provides a method of quickly calculating the Bragg diffraction

pattern as a function of crystal depth.

3.2.1 Strain Modelling

There are many different methods of computationally solving the Takagi-Taupin

equations. One very elegant method is presented by Wie et al [56]. If the strain
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is constant through one layer of thickness, A − A0, equation 3.28 can be solved

analytically. The scattering amplitude as a function of crystal depth is:

X(A) =
sX0 + i(B + CX0) tan s(A − A0)

s − i(C + BX0) tan s(A − A0)
(3.29)

where

X(A0) = X0

B = −(1 + ik)

C = y + ig

s =
√

C2 − B2

If the crystal substrate is a perfect unstrained crystal, X0 becomes:

X0 ≡ −B

C −√
C2 − B2

(3.30)

This solution is mathematically equivalent to the Darwin equation with the addition

of absorption (equation 3.23). Using equation 3.30 the diffracted intensity at any

point in the thickness can be found.

Incorporating strain into this mathematical formalism is straight forward. As-

suming the strain only changes the local Bragg condition the strain component can

be introduced through the variable αH [56, 57]. When a lattice is mildly strained this

variable now becomes:

αH = −2(∆θB − η × tan θB) sin 2θB (3.31)

Incorporating the modification into equation 3.29, the Bragg diffraction patterns of

a perfect crystal with a strained surface layer can be calculated.
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It is possible to calculate diffraction patterns for many types of strained crystals,

including superlattices. The periodicity of the superlattice allows a recursion relation

to be found such that the diffraction pattern due to the final layer is only dependent

on the diffraction pattern in the preceding layers. The diffracted intensity due to the

jth period of a 2 layer superlattice is given by [56]:

Xj =
(P − iQ)Xj−1 + (T − iR)

(T + iR)Xj−1 + (P − iQ)
(3.32)

where

P = (B1B2 − C1C1) tan s1A1 tan s2A2 + s1s2

Q = C1s2 tan s1A1 + C2s1 tan s2A2

R = B2s1 tan s2A2 + B1s2 tan s1A1

T = (B1C2 − B2C1) tan s1A1 tan s2A2

and A1,2 are the thickness of the individual layers. Figure 3.11a shows the diffracted

intensity as a function of angle (rocking curve) of a 200 layer superlattice.
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Figure 3.11: Bragg rocking curve due to a superlattice.



CHAPTER IV

Experimental Setup

The experiments described in this thesis were performed at the Michigan-Howard-

Lucent Technologies Collaborative Access Team (MHATT-CAT) undulator beamline

at the Advanced Photon Source (APS). Synchrotron sources, such as the APS, can

provide very intense pulses of monochromatic x-rays which are necessary to measure

lattice strain. The APS is comprised of 37 beamlines, with each beamline equipped

with a bending magnet and an undulator (or wiggler) radiation source. The MHATT-

CAT undulator beamline is comprised of four experiment hutches, each devoted

to a specific type of experiment (see figure 4.1). In this thesis, experiments were

performed in hutch ’D’.

4.1 The X-ray Source

Synchrotron sources produce radiation by the acceleration of charged particles.

The generation and maintenance of these charged bunches (typically electrons) are

the focus of many fields of physics and will be briefly touched upon here. A RF

cathode produces a large number of electrons. These electrons are accelerated first

by a linear accelerator to an energy of 200MeV and then by a booster ring to a final

46
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Figure 4.1: A schematic of the floorplan of the MHATT-CAT beamline. Image taken
from www.mhatt.aps.anl.gov.

energy of 7GeV[58]. To maintain electron bunch structure in the storage ring, the

bunches must be injected into the storage ring at a given frequency and phase with

respect to the RF accelerating cavities. The structure of the x-ray bunch train is

very important for time-resolved experiments.

4.1.1 Bunch Timing

To counter attenuation and dispersion of the electron beam, RF accelerating

cavities compress and clean the spatial structure of each individual bunch while at

the same time maintaining the temporal structure of the beam. The RF accelerating

cavities run at a harmonic of the storage ring frequency ∼352MHz. For experiments

that are sensitive to bunch timing, a signal is sent from the APS control room that

is phase locked to the RF accelerating cavities. The timing jitter of this signal with

respect to the electron bunch is ∼20ps.
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Figure 4.2: An aerial photograph of the Advanced Photon Source. Image taken from
www.aps.anl.gov.

Each trough of the RF cycle is called a bucket. During normal operations most

buckets are not filled. The standard fill pattern is structured such that there are 22

individual electron bunches (’singlets’) and a ’superbunch’ made of 6 electron bunches

each separated by a single bucket (see figure 4.3)(note: this superbunch has since been

reduced to a singlet). Each electron bunch is separated by 52 buckets (or ∼150ns).

At the end of the pulse train a gap of 300ns is incorporated to provide a method of

counting individual revolutions of the storage ring. A signal which is locked to the

superbunch (’P0’=272kHz) is relayed to the experiment hall so that time-resolved

experiments may be synchronized to the revolution period of the synchrotron (see

section 4.3.2).
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Figure 4.3: Synchrotron pulse train

4.1.2 Synchrotron Radiation

Synchrotron radiation is the classical electromagnetic effect of a charged particle

emitting radiation upon changing direction. In these experiments an acceleration

device called an undulator provides highly monochromatic x-rays. An undulator is

made up of a set of permanent magnets spaced in a periodic array (figure 4.4). As

an electron bunch travels through the periodic array, the bunch is accelerated by the

static magnetic field. As the direction of the magnetic field is reversed, the electron

bunches are accelerated in the opposite direction. If the periodicity of the array

and the energy of the electron bunches are matched appropriately, the generated

radiation will add coherently producing a very intense monochromatic x-ray beam.

Changing either the electron energy or the spacing of the magnets, the wavelength
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Figure 4.4: A representation of an undulator of the APS. Image taken from
www.aps.anl.gov.
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of the generated radiation will be modified.

λn =
13.056λu[cm]

E2[GeV ]n
(1 + K2/2) (4.1)

Where the deflection parameter, K, is:

K = 0.934λu[cm]B0[T ] (4.2)

where λu is the periodicity of the undulator, B0 is the magnetic field of the undulator,

and E is the energy of the electron beam[59]. The efficiency of the undulator changes

with energy of the radiation. Figure 4.5 shows the peak brilliance (intensity per

angular divergence per 0.1%bandwidth) of the output of the undulator as a function

of x-ray energy. The bandwidth of the generated radiation is determined by the

number of poles in the undulator:

δλ

λ
=

1

nN
(4.3)

where n is the harmonic number. At the MHATT-CAT beamline the number of

poles is 72. The natural pulse width of the x-rays is determined by the pulsewidth of

the electron bunches, in this case ∼70ps[58]. The effective pulse length of the x-rays

is stretched to ∼100ps since the 352MHz reference RF is locked to the output x-ray

pulse to only ±20ps.

4.1.3 Beamline Layout

The x-ray pulses emitted from the undulator possess significant spatial divergence

and spectral bandwidth. To measure strain accurately with x-ray diffraction, the

incident x-rays should be very close to the plane-wave limit. To ensure the incident

x-rays are monochromatic, the introduction of some simple x-ray optics is necessary.
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Figure 4.5: Intensity versus wavelength of the MHATT-CAT undulator beamline.
Adapted from www.mhatt.aps.anl.gov.
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Figure 4.6: The x-ray reflectivity of a tungsten mirror. Adapted from www-
cxro.lbl.gov

Immediately after the undulator a set of water cooled slits spatially restricts

the beams to 400x400µm2. This spatial restriction limits the spatial divergence

and the spectral bandwidth. To clean the x-rays spectrally, a cryogenically cooled

double crystal Si [111] x-ray monochrometer is used. The bandwidth exiting the

monochrometer is limited by the width of the diffraction peak (∼1.4 eV). At 10k eV,

there are ∼ 1012 x-ray photons per second emitted to the experiment. To limit the

attenuation a helium flight tube is used to transport the beam. Even using the

helium flight tube, only about 5% of the 10keV photons survive to the experiment

due to random air interfaces and imperfect flight tubes.

Diffraction conditions of the monochrometer do permit a significant amount of

third harmonic of the undulator to propagate to the experiment (∼ 10% of the

fundamental). To remove the third harmonic a grazing incident tungsten mirror

is used 30 meters downstream from the monochrometer. The reflectivity of the

tungsten mirror reduces the third harmonic by a factor of 100 at a grazing angle of

0.28 degrees (figure 4.6). The mirror is also used to coarsely steer the x-ray beam.
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Even with the water cooled slits there is still a significant amount of spatial

divergence. The experiments are performed ∼55 meters from the source (see figure

4.1). At this distance the x-ray beam has diverged to 1x4mm2. A second pair of slits

is used to clean up the spatial divergence. The typical x-ray spot size at the crystal

sample is ∼ .1x.2mm2.

At the experiment, the target crystal is supported by a 4 circle goniometer. The

goniometer allows full control of the angular orientation of the crystal as well as

control of the angular position of the detector with up to 0.2mdeg resolution.

4.2 Detectors

Ultrafast time-resolved diffraction measurements require x-ray detectors that can

differentiate between individual x-ray bunches emitted by the synchrotron. Non-

invasive slow detectors are also useful in measuring average x-ray flux. There are

several x-ray detectors that are used in x-ray scattering experiments. In the experi-

ments described here only three methods are implemented.

4.2.1 Ionization Chamber

Ionization chambers are perhaps the easiest tools to measure average x-ray flux.

As x-rays propagate through a gaseous medium, the photon energy may be great

enough to ionize the surrounding gas. Two metal plates, held at a constant high

voltage, surround the path of the x-ray beam. As the x-rays ionize the gas, the emit-

ted charged particles are pulled to the metal plates causing a current to propagate

in the charging lines. This current is measured by a high gain ammeter, the output

of which is directly proportional to the intensity of the x-ray beam.
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Figure 4.7: Efficiency of a 10-cm long gas ionization chamber for different gasses at
normal pressure. Adapted from [59].

Calibrating the intensity of the beam is straightforward if the ionizing gas and

the geometry of the charged plates is known. Figure 4.7 shows the ion chamber

efficiency as a function of x-ray energy for some typical buffer gases and assuming

the plates are 10cm long.

4.2.2 APD

To temporally resolve the emitted bunch pattern a silicon Avalanche Photodiode

(APD) is used. The basic functionality of the APD is very similar (if not identical)

to a regular optical photodiode[60]. X-rays that illuminate a biased piece of sili-

con, cause bound electrons to be promoted from the valance band to the conduction

band. These highly energetic electrons continually excite other valance band elec-

trons causing a cascade effect to occur. The cascaded electrons are then detected as

a time-resolved current.
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Figure 4.8: Temporal response of the APD.

The advantages of this device are three fold: the efficiency, gain, and speed. If

the silicon is thick, the quantum efficiency of the APD will be close to unity. The

inherent gain of the system can be many orders of magnitude depending on the bias

voltage. But the most important trait of the APD (at least for these experiments)

is the rise time of the detector is on order of 3-5ns (figure 4.8). This rise time is fast

enough to temporally resolve the singlet spacing of the emitted x-ray bunches (figure

4.3). The detector is then gated to measure the average intensity of any given x-ray

bunch.

Although the APD has substantial gain, to detect small changes in x-ray intensity

external amplifiers are needed. These amplifiers have two requirements; high gain

and speed. The amplifier must be fast enough that single x-ray bunches separated by

150ns can be individually gated. 40MHz (or faster) amplifiers accomplish this task

adequately. After amplification it is possible that a single x-ray photon will register

as a single volt at 50 ohms impedance.

Although APD’s can distinguish between individual bunches emitted from a syn-
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chrotron, the time-resolution is still limited by the x-ray pulse width. To measure

dynamics on the picosecond time scale using synchrotron radiation, it is necessary

to measure the x-ray pulse shape as a function of time. One device for performing

this task is an x-ray streak camera.

4.2.3 Streak Camera

X-ray streak camera uses the generation of electrons of an x-ray photocathode

to measure the time-intensity distribution of the x-ray pulse [61, 62, 30]. The pho-

tocathode (typically CsI) generates a large number of primary electrons upon x-ray

excitation (typical efficiencies ∼10% [63, 64]). The primary electrons cause a cascade

of secondary electrons (energy spread ∼1.5eV) to be emitted which are accelerated

towards the anode.

As the electrons are accelerated, they enter a region surrounded by two field

plates. During non-streaking operation, these plates are held at a constant voltage

causing the electron beam to be perturbed. During the streak mode, the bias on these

plates changes over time such that electrons emitted at different times experience a

different field. This causes the electron beam to spatially spread along one spatial

axis. The amount of spatial dispersion depends on the x-ray pulse length and the

speed of the bias switch. The trigger for this sweeping voltage is generated by

a photoconductive switch turned on by the ultrafast laser. The advantage of the

photoconductive switch is that the voltage pulse is locked to the laser which generates

the time-dependent fluctuation in the x-ray beam.

The streaked electron beam strikes a multichannel plate causing a cascade of
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electrons. This cascade irradiates a phosphor screen causing the exposed area to

emit visible light. Since the electron beam has been spatially dispersed, the light

that is emitted follows the electron beam and thus appear to be a streak. The light

is collected using a CCD array.

To calibrate the time dependence of the streak, an ultrafast ultraviolet (uv) pulse

is used to generated the electrons on the photocathode. As the uv pulse is optically

delayed with respect to the photoconductive switch, the generated electron pulse

will change with the phase of the voltage pulse. By mapping the position of the

electron bunch as a function of delay, a correlation between CCD pixel number and

time delay is achieved (see figure 4.9). The increase of the streak voltage changes

the sweep speed, effectively changing the streak camera resolution. Streak cameras

have been demonstrated to have time resolutions of 0.5ps and 3ps using the single

shot and averaged modes respectively[30]. In the setup used in these experiments

the time resolution ∼5ps.

4.3 Ultrafast Laser system

The generation of large coherent strains on a picosecond timescale requires a

laser system that is capable of producing pulse widths shorter than the product of

optical penetration depth and the speed of sound. To generate large strains (> 10−3),

optical fluences in excess of 10 mJ
cm2 are desirable (see chapter 2.2). Commercial laser

systems are now available which provide stable high power ultrafast optical pulses.

The general layout of the laser system is well known[65], and it will be discussed

briefly in section 4.3.
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Figure 4.9: Streak camera data of 6 uv pulses separated by 30ps

4.3.1 Ti:sapphire oscillator

A short pulse is required to create very high peak intensities. To generate the

shortest pulse, the phases of all of the cavity modes must be locked with respect

to each other, i.e. modelocked. To induce modelocked operation in a laser cavity,

typically a loss mechanism is introduced into the cavity such that only optical light

with high peak powers is chosen. The mechanisms are distributed into two distinct

classes, active and passive. Passive modelocking (the method that is presented here)

uses the components permanently installed in the laser cavity to induce pulsed oper-

ation. Nonlinear effects in the gain medium is the passive component which induces

modelocking for these experiments. The general optical layout is shown in figure

4.10.
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Figure 4.10: A schematic for the laser oscillator

Titanium doped Sapphire (Ti:sapphire) modelocked oscillators have become the

standard for producing ultrashort and ultra stable optical pulses. The large gain

profile of the Ti:sapphire (greater than 300nm) makes it possible to generate sub-

100fs optical pulses using a relatively simple design[65]. The optical non-linearity

used in the Ti:Saphire oscillator is called the Kerr-Lens effect. Ti:sapphire has a

refractive index that changes with optical intensity (n = n0 + n2I). If this optical

light is focused into a crystal, the intensity of the light may change in the index

enough such that the effective focal length in the crystal changes causing continuous

wave operation to be unstable. A pair of prisms are introduced to compensate for the

dispersion inside the cavity. If the intra-cavity intensity is large enough, self-focusing

may occur allowing higher peak intensities to see a stable cavity. Thus the cavity

itself selects short pulsed operation over CW operation.

The Ti:sapph oscillator that is used in these experiments is a Kapteyn-Murnane
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Labs oscillator pumped by a cw diode laser. To insure that the output of oscillator

is phase locked to the x-ray pulse train, the cavity has been modified slightly to

allow locking to a reference RF source which is locked to the accelerator cavities of

the synchrotron. Because of spatial constraints, the pulsing frequency of the optical

oscillator is set to the fourth sub-harmonic of the RF reference, 88MHz.

To control the pulsing frequency the cavity length must be adjusted with very

high precision. To achieve this high precision, active feedback is used to control the

cavity length. The back mirror is mounted on a small piezoelectric crystal. This

piezo changes the cavity length (and thus the oscillator frequency) when a voltage

is applied. At the output of the oscillator a fast photodiode samples the pulsing

frequency (see figure 4.10). The output of the photodiode is sent to a 352MHz

bandpass filter and then mixed with the reference RF. The mixer creates a DC

error signal which represents the phase difference between the RF reference and the

oscillator. The error signal sent to a feedback loop which adjusts the voltage on

the piezo in the attempt to zero the error signal. If the piezo does not have the

dynamic range to compensate for the phase error, a mechanical stepper motor can

make macroscopic changes to the cavity length to get within the piezo’s dynamic

range. The feedback loop has sufficient bandwidth to lock the oscillator to the RF

to better than 20 ps and can respond to exterior noise sources up to 1kHz.

4.3.2 Chirped Pulse Amplification

Modelocked oscillators produce optical pulses with energies ∼ 5nJ . To generate

large amplitude lattice vibrations fluences of greater than 10 mJ
cm2 are need, which



62

not practically possible with the output of the oscillator alone. Using a method

optical amplification method called chirped pulse amplification (CPA) [66, 65], these

ultrafast optical pulses may be amplified the several orders of magnitude needed to

generate very large lattice strains.

CPA has become the standard method of generating high power ultrashort pulses.

A general diagram of the CPA setup is given in figure 4.11. The trick to CPA

is to make a short pulse into a long pulse, thereby reducing the peak intensity.

Transmitting a transform limited pulse through a dispersive medium, will cause

the different fourier components (i.e. colors) to travel at different velocities thus

’stretching’ or ’chirping’ the pulse. Using a grating stretcher, the optical pulse can

be chirped in a controlled fashion, such that colors will come out of the stretcher

with a definitive phase relationship. At the output of the stretcher, the once 50fs

optical pulse is stretched to ∼25ps reducing the peak intensity by almost 3 orders of

magnitude.

To generate the milliJoule pulse energies that are required, a laser is needed

which can supply at least that amount of energy to the amplifier crystal. A 1kHz Q-

switched Nd:YLF laser is used to provide 12 W of power to the amplifier crystal. The

repetition rate is in contrast to the 88MHz pulse rate of the modelocked oscillator. To

match the pump rate, the 88MHz pulse train is reduced to 1kHz without destroying

the spectral components of the optical pulse. The most common method is to use

a Pockels’ cell. A SRS535 digital delay generator controls the Pockels’ cell firing

sequence as well as the firing time of the Nd:YLF laser.
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Figure 4.11: A general schematic for the ultrafast optical pulse amplifier.

After a particular pulse has been selected, the chirped pulse is directed into an 8

pass amplifier. After 8 passes, the optical pulse energy has increased ∼60dB while

still maintaining a 25ps pulse width. To reconstruct the short pulse, the fourier com-

ponents of the optical pulse must be ’unchirped’, that is all of the fourier components

will possess a relative phase such that a transform limited pulse is created. This is

accomplished in a grating compressor. The final compressed and amplified pulse is

∼70fs, ∼0.5mJ. With minimal focusing the fluence can easily exceed 100 mJ
cm2 meeting

the requirements to generate large coherent lattice vibrations.

4.4 Laser/X-ray Timing

Insuring that the ultrafast laser pulse and x-ray pulse arrive at a given time

delay is imperative in performing time-resolved diffraction studies of laser driven

processes. Using some digital electronics and the APD, the laser and x-ray pulse
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Figure 4.12: Flow diagram of the Pump-probe setup

can be engineered to arrive at the correct phase (figure 4.12). The APD is very

sensitive to optical light, so the APD can detect the optical light and the x-ray source

simultaneously. This gives a method of detecting the relative time delay between a

specific x-ray pulse and the ultrafast laser. It is very unlikely that the relative

time delay between the x-ray and laser pulse is completely matched. The ability to

manually adjust the delay is necessary in the pump-probe geometry. Changing the

relative time delay is implemented by using a simple digital phase shifter.

By slowly adding phase to the reference RF, the relative delay of the laser and

the x-ray source can be controlled. The feedback loop recognizes that the phase is

not correct and adjusts the laser cavity accordingly. This in effect will change the

relative timing between the optical pulse and the x-ray pulse by the amount of phase
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that was added to the reference RF. The resolution of the phase shifter is limited to

19ps, while not great, is well within the effective x-ray pulse length. The maximum

delay that the phase shifter can impart is 4.75ns.

This method of pulse delaying, while effective in the study of relatively short

phenomena, does not allow the continuous following of long lived crystalline strains.

To study the evolution of picosecond crystalline strains requires picosecond preci-

sion through many microseconds of delay. Traditional optical scattering experiments

would require kilometers of optical paths to achieve microsecond delays, which in

most circumstances is impractical. However, these experiments utilize two indepen-

dent light sources for the pump-probe geometry. Digital electronics can be used to

adjust the relative locations of the x-ray and laser pulses.

A SRS535 digital delay generator will generate an arbitrary delay line for the

optical pulse. This delay box controls when the amplifier is fired and oscillator pulse

is amplified. When used in conjunction with the digital phase shifter, delays of -1ms

to 1ms are achievable with 19ps resolution. By following a specific x-ray pulse with

the boxcar integrator an ∼80dB dynamic range of the timing delay is possible.



CHAPTER V

Time-Resolved X-ray Bragg Diffraction

The study of picosecond ultrasonics has been well documented using optical scat-

tering techniques [1, 2, 3]. These optical techniques, however, can only provide

frequency and relative phase information about acoustic pulses. Time-resolved x-ray

Bragg diffraction can measure the amplitude and frequency spectra of the acoustic

pulse simultaneously.

A phonon, of wavevector ±q, will generate sidebands on a Bragg rocking curve.

The positions of the sidebands are determined by momentum conservation: k +G±

q = kH (see figure 5.1). Bragg’s law implies that the generated phonon wavevector

determines the location of the diffraction sidebands.

q = ∆θ|G| tan θB (5.1)

To resolve small phonon wavevectors (∼ 1µm−1), Bragg rocking curves must have

an angular extent very close to the Darwin width. Crystals with diamond or zinc

blende structure (e.g. Ge, GaAs, or InSb) can be grown with very few crystalline

defects so that the experimental x-ray rocking curves are limited only by the x-ray

bandwidth.

66



67

G

q

Figure 5.1: Wavevector matching in the Bragg geometry.
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Figure 5.2: (a) Rocking curves of the symmetric 111 Bragg reflection in InSb. Data
(blue curve) taken with an ion chamber and calculation (red curve) by
integration of the Takagi-Taupin equations. (b) Rocking curves of the
400 symmetric Bragg reflection in Ge. Data (blue) Takagi-Taupin with
an added angle convolution (Green). Inset: Data (blue) pure Takagi-
Taupin (red).

X-ray rocking curves of an unstrained 111 InSb crystal measured at the MHATT-

CAT undulator beamline are very close to the Darwin width (see figure 5.2). The 004

reflection in Ge is much narrower than the InSb reflection, implying that the angular

resolution of this reflection is limited by the x-ray bandwidth (10keV±1.4eV). The

calculated Darwin curve convolved with the x-ray bandwidth correctly predicts the

observed diffraction patterns. The small wings apparent on both the experimental

rocking curves correspond to either the static strain induced from the mounting of

the crystal and/or the non-gaussian spectral profile of the x-rays.
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5.1 Time-Resolved X-ray rocking curves

To generate an ultrafast strain pulse with a large wavevector, an ultrafast light

source is needed to illuminate a material with a small penetration depth. In these

experiments, an 840 nm 70 fs laser pulse illuminates a 111 InSb or a 001 Ge single

crystal. The optical penetration depth (η) for 840 nm light is ∼100nm and ∼220nm

for InSb and Ge respectively. This very shallow penetration depth allows the gener-

ation of large surface strains with a peak acoustic wavevector of ∼ 1
η
. The x-rays are

able to sample the laser induced strain directly in these two systems since the x-ray

extinction depth (∼1µm) is significantly larger than the optical penetration depth.

InSb is an ideal crystal to begin the study of acoustic phonon generation due

to its small optical penetration depth and relatively slow sound speed (∼3400m/s

in the 111 direction). Upon laser excitation (fluence ∼10 mJ
cm2 ), a significant fraction

of the incident laser energy is absorbed in the crystal causing an increase in the

average surface temperature. The laser fluence is not enough to cause surface melting,

though over many repeated heatings surface scarring is visible. This scarring did not

affect the x-ray diffraction patterns indicating that damage was only on the surface.

Spectroscopic data indicate that the repeated heating causes a simple oxidation on

the crystal surface, which leads to the observed surface scarring.

The rise in surface temperature causes the average spacing of the crystal lattice

to increase. Since the location of the diffraction peak is directly related to the

lattice spacing, the laser heating will shift the diffraction pattern (figure 5.3). Using

the Bragg equation, the lattice parameter is inferred to have expanded by ∼0.007%
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Figure 5.3: Rocking curve of the heated (dashed) and the unstrained 111 symmetric
reflection in InSb measured with an ionization chamber.

(∼0.26mÅ). Assuming a linear expansion coefficient of 4.7×10−6K−1 [67], the crystal

temperature increases by ∼ 15◦K upon laser exposure.

Although this temperature rise is approximately constant, the strain is signifi-

cantly larger at the time of laser excitation. The time dependence of the strain is

measured using a ’fast’ avalanche photodiode (APD). The plotted signal of the APD

and the ionization chamber (which samples every x-ray pulse) is slightly different due

to photon counting statistics and electronic noise (figure 5.4). Sidebands on either

side of the diffraction peak are visible 100 ps after laser excitation (figure 5.5).

In the limit of kinematic diffraction, the existence of sidebands on the diffraction

peak indicates that there are three regions inside the crystal; unstrained, compression

(positive sidebands), and rarefaction (negative sidebands). In less than 1ns the shape

of the diffraction pattern has almost returned to normal, though the diffraction peak

has shifted ∼3mdeg indicating a transient strain has propagated out of the detecting

region leaving a residual heated layer at the surface. Assuming a linear expansion
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Figure 5.4: Angular response of the APD (solid) and Ionization chamber (dashed).
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Figure 5.5: The diffraction patterns of the 111 InSb at time delays of -100ps and 100
ps
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coefficient of 4.7× 10−6K−1, the static thermal layer at the crystal surface has risen

at least ∼ 60◦K.

By measuring individual rocking curves at different relative time delays, a time-

resolved picture of the strain begins to develop (figure 5.6). At zero time delay

sidebands are immediately apparent on the main Bragg peak. The positive sidebands

only remain for ∼400ps indicating the compression layer only exists within the x-ray

extinction depth for that amount of time. Oscillations on the rarefaction sidebands,

however, are apparent for ∼500ps and show time-dependent oscillations. At each

discrete angle a Fourier transform of the time axis is preformed (figure 5.6b). This

demonstrates that as the crystal angle deviates from the Bragg condition the central

frequency of the oscillations changes linearly. Since the deviation from the Bragg

condition is a measurement of phonon momentum, the time-resolved x-ray diffraction

is a graphical representation of the the acoustic dispersion relation, ω = ck.

Data taken with the symmetric 004 reflection in single crystal Ge shows qualita-

tively similar features to the InSb data(figure 5.7). There are two distinct differences

from the InSb and the Ge cases. The most apparent difference is the global increase

in diffraction efficiency at positive time delays. This is due to the small Darwin

width of the Ge reflection. By distorting the crystal, the x-ray reflectivity rises due

to the increased coupling of the finite x-ray bandwidth. The second difference is the

lack of time dependent modulations on either side of the diffraction peak. This is

due to the faster sound speed (∼4800m/s) and the larger Bragg angle which makes

the time-dependent oscillations faster than the x-ray pulse width.
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Figure 5.6: (a)Time-Resolved Bragg diffraction curves of the symmetric 111 reflec-
tion in laser strained InSb. Adapted from [68] (b) Fourier transform of
the Time-Resolved Bragg Diffraction. The solid line has been added for
emphasis.
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Figure 5.7: Time-Resolved Bragg diffraction curves of the symmetric 400 reflection
in laser strained Ge.

5.2 Comparison: Experiment vs. Theory

To simulate these data, we assume that the generated strain is governed by the

Thomsen model (see section 2.2) and that the incident optical radiation does not

permanently change the diffraction patterns. We have simulated the diffraction pat-

terns using the Thomsen model in conjunction with dynamical diffraction theory (the

MATLAB code is shown in appendix E). To account for the added sidebands seen

in figure 5.2 the dynamical diffraction calculations have included a static gaussian

background.

Figure 5.8a shows the calculated TRXD picture for the symmetric 111 reflection

in InSb assuming that the x-ray pulse is perfectly monochromatic and infinitely

short. The time dependent oscillations observed in the data are accurately predicted
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in the simulation. These oscillations change frequency linearly as a function of angle

representing the acoustic dispersion relation (figure 5.8b). The simulation for single

crystal Ge shows qualitatively similar results.

The incorporation of ’real world’ constraints (i.e. x-ray bandwidth of 1.4eV and

100ps pulsewidth) requires a two-dimensional convolution on the simulation (see

figure 5.9). The general structure of the InSb and Ge data are well represented by

the simulations. In the case of InSb the time dependent oscillations as well as the

lifetime of the sidebands is correctly predicted. In the case of Ge, the increase in

diffraction efficiency and the existence of an interference fringe of the compression

side is correctly predicted. Although these general features are maintained, there are

distinct differences between the accepted theory and the experiments.

5.2.1 Changes to the Thomsen Model

The direct comparison of the data with the Takagi-Taupin calculations can shed

light on the deficiencies of the Thomsen model. The experimental diffraction patterns

and the calculated diffraction patterns highlights the difference in the symmetric 111

reflection of InSb. Figure 5.10 shows the calculation and data at a laser time delay

of 100ps. It is clear that the Thomsen model underestimates the strain in both the

compression and rarefaction sidebands. At time delays >500ps the Thomsen model

accurately predicts the residual thermal layer.

The data indicate that the relative partitioning of the two components of the

Thomsen model (the static heated layer and the propagating phonon pulse) is not

accurate. Increasing the relative partitioning of phonon to heating by a factor of two
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Figure 5.8: (a) Time-resolved x-ray diffraction of the symmetric 111 reflection in InSb
calculated using the Thomsen model of strain generation. Adapted from
[68].(b) Fourier transform of the time-resolved diffraction calculation.
The contours are on a log scale.
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Figure 5.9: (a)Time-resolved Bragg diffraction of InSb using the Thomsen model of
strain incorporating ’real world’ constraints. Adapted from [68]. (b)’Real
world’ simulation of Time-resolved Bragg diffraction using the 400 reflec-
tion in Ge.
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Figure 5.10: InSb data and simulation using the Thomsen model at a time delay of
100ps. Adapted from [68].
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Figure 5.11: InSb data and simulation incorporating the best fit partitioning of en-
ergy.

appears to minimize the error between the simulation and the experiment (figure

5.11) [68].

The Ge data also demonstrate that the Thomsen model is not accurate. The

compression sideband is visible long after the prediction of the Thomsen model.

Cavalleri et al. [26] deduced that ultrafast carrier diffusion modified the depth

where the strain is generated in Ge. It was claimed that the strain in Ge was

initially produced up to 1µm in depth, 5 times the optical penetration depth. The

simulation displayed in figure 5.12 assumes a 2µm penetration depth and is the best

fit to the data. The discrepancy between Cavalleri et al. and this work could be due
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Figure 5.12: Simulation of the time-resolved strain in Ge assuming the strain was
generated in a 2µm depth

to the fluence dependence of the ultrafast carrier diffusion [43].

5.3 Transparent materials

In transparent materials the Thomsen model is no longer valid. The ultrafast

laser cannot generate a large surface stress and thus an acoustic pulse can not be

generated by the ultrafast laser. ZnSe possesses an electronic band gap of 2.6eV[67],

making the direct photo absorption with the 840nm laser pulse impossible. ZnSe also

possesses very good crystalline quality, making this material ideal for the study of

laser induced strain in transparent materials. A TRXD experiment was performed

on the symmetric 004 reflection in ZnSe, to study the strain generated using an

ultrafast laser (see figure 5.13).

After time zero the peak of the rocking curve appears to have shifted by ∼0.6mdeg.

There do not appear to be any sidebands indicating that the crystal lattice undergoes

a simple expansion. Assuming a thermal expansion coefficient of ∼ 7.1 × 10−6K−1
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Figure 5.13: Time-resolved Bragg diffraction of the symmetric 400 reflection in ZnSe.

[67], the instantaneous temperature increase is inferred to be about 30 degrees Kelvin.

The laser fluence that would need to illuminate the surface, assuming that the ab-

sorption takes place throughout the entire crystal, is ∼180 mJ
cm2 , which is much larger

than the experimental value of ∼10 mJ
cm2 . This observation indicates that heating

through a single photon processes is unlikely. The most likely explanation is the two

photon absorption due to surface second harmonic generation.

5.4 Acoustic Pulse Evolution

The previous experiments were limited to the study of acoustic pulse propagation

within the x-ray extinction depth. For allowed Bragg reflections, this length scale is

∼1 micron. A quasi-forbidden reflection, however, can probe depths as large as the

incoherent x-ray absorption depth, which can be orders of magnitude greater than

the x-ray extinction depth of the strong Bragg reflection. The TRXD data for the

quasi-forbidden 222 reflection in InSb is shown in figure 5.14. At zero time delay
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Figure 5.14: Time-Resolved Bragg diffraction of the quasi-forbidden 222 reflection
in laser strained InSb. Adapted from [68]

the main diffraction peak reduces in intensity very quickly at the same time weak

sidebands are visible[68].

5.4.1 Acoustic Reflections

The diffraction efficiency of a quasi-forbidden reflection is very small making

precise measurements of the strain very difficult. Acoustic reflections can extend

the effective detection distance inside the crystal. Since acoustic pulses are rela-

tively large wavelength, their dispersion characteristics are such that the acoustic

wavepacket should not disperse over many meters (see section 2.2). X-ray Bragg

diffraction can then be used to study acoustic pulse evolution over long times.

If the crystal surfaces are highly polished, the impedance mismatch at a crys-

tal/air interface will allow a reflection of an acoustic pulse. At the reflection, the

acoustic pulse will experience a π phase shift since the impedance of the air at the
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Figure 5.15: Acoustic pulse dynamics upon a reflection

crystal surface is approximately zero[69, 3]. This means that at the time of acoustic

collision, the strain at the crystal surface is double the amplitude of the acoustic

pulse (see figure 5.15).

An acoustic pulse generated in a 280µm thick piece of single crystal 2 side pol-

ished 001 Ge. Measuring the diffraction efficiency of the symmetric 004 reflection, it

is seen that at regular intervals (period 110ns) the x-ray intensity increases dramat-

ically for a period ∼3ns (figure 5.16). The characteristic frequency associated with

the increase in diffraction efficiency is due to the propagation of an acoustic pulse

travel time through a 550µm crystal. The time dependent background is due to the

static heating of the crystal lattice which diffuses into the crystal bulk. The diffusion

time constant is about 150ns.

5.4.2 Acoustic Dispersion

Figure 5.17 shows the time-resolved x-ray diffraction measurement of the first

and tenth returns of the acoustic pulse. The first revival corresponds to the acoustic

pulse travelling ∼550µm while the tenth revival corresponds to an acoustic pulse

∼5.55mm travel distance.
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Figure 5.16: Diffracted x-ray intensity as a function of time delay on the rarefaction
side of the x-ray rocking curve.
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Figure 5.17: Time-Resolved diffraction at an acoustic reflection (a)First revival, (b)
tenth revival.
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Figure 5.18: Simulation of an acoustic pulse reflection from a Bragg reflection sur-
face. (a) Static heated layer included (b) heated layer not included

To simulate the data, it is assumed that the penetration depth of the laser is 1µm.

During the first revival it is assumed that the static heated layer has decreased in

amplitude by a factor of 4, while the tenth revival does not have a heated layer.

The laser fluence was a floating variable so that the simulation would fit the data

accurately.

During the first revival the diffraction peak appears to be consistent with the

Thomsen model (figure 5.18). The compression sideband appears to have increased

due to the doubling of the strain at the crystal surface. At the same time, the

rarefaction sideband is diminished due to an acoustic pulse interference.

Later reflections, however, do not appear to follow the Thomsen model. The

large momentum components seem to have disappeared leaving only the low fre-

quency components of the acoustic pulse. The interference fringe that crosses the

diffraction peak changes as the acoustic pulse experiences more reflections. During

the first revival, the interference fringe takes half a nanosecond to cross the entire

diffraction peak which is consistent with the Thomsen model. In the tenth revival
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the interference fringe crosses the entire diffraction peak in about 3ns. This indicates

that the acoustic pulse has spatially broadened by over 10 µm.

Assuming that the interference fringe is due to a spatial dispersion of the acoustic

pulse, the rarefaction components travel about 0.5% faster than the compression

components. By modifying the Thomsen pulse with an added spatial dispersion,

qualitative similarities begin to appear. The equations given in chapter 2.2 predict

that the amount of dispersion should be on order of an Ångstrom for an acoustic

pulse with a 1µm spatial extent. The exact cause of this dispersion is not yet known,

though there are a few possible explanations.

First, the crystal faces may not be perfectly polished. If there are crystal surface

variations that are on order of the acoustic wavelength, the acoustic pulse will not

experience a perfect reflection due to wave diffraction effects. Because of the nature

of diffraction, the high frequencies will diffract much faster than the low frequencies

leading to a spatial broadening of the acoustic pulse. The second possible reason

is the non-linear frequency attenuation of the crystals. It is quite likely that the

attenuation length is different for different frequencies, leading to a dispersed acoustic

pulse.

5.4.3 Background free measurements

In all of the previous measurements the direct observation of the phonon com-

ponent of the strain was distorted by the background of the static heated layer.

Changing the diffraction geometry can overcome this problem. If the laser excites

the back surface of the crystal, the acoustic pulse will propagate into the diffraction
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region with out a static heated layer to interfere with the measurement. After a

time corresponding to the crystal thickness divided by the sound speed the acoustic

pulse will collide with the front crystal surface. Assuming the crystal is thick when

compared to the x-ray extinction depth, the Bragg diffraction will not be sensitive

to the static heated surface on the backside of the crystal. The corresponding time-

resolved diffraction pattern will only change with the presence of additional crystal

momentum components.

Data taken with the backside excitation of Ge demonstrates the observational

power of this method (see figure 5.19a). As before, at times preceding the collision

with the crystal surface, the peak diffraction efficiency increases. As the acoustic

pulse approaches the crystal surface, sidebands on both the compression and rar-

efaction sides are apparent indicating the existence of high wavevector components.

The existence of large expansion sidebands at the collision point indicates the effec-

tive doubling of the surface strain due to the π phase shift upon acoustic reflection.

Assuming a 1µm strain depth, the data appears to correspond quite well with the

Thomsen model (figure 5.19b).
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Figure 5.19: Time-resolved X-ray Bragg diffraction due to the backside laser excita-
tion of 001 Ge.



CHAPTER VI

Time-Resolved X-ray Laue Diffraction: The

Symmetric Reflection

Although the x-ray Bragg diffraction is an effective tool for studying time depen-

dent strains, the small extinction depth of the diffracting x-rays does not allow the

continuous monitoring of a propagating strain in thick crystals. Laue diffraction can

circumvent this problem due to the fact that the x-rays will now diffract throughout

the bulk of the crystal.

In the symmetric Laue geometry, a laser generated strain is perpendicular to the

reciprocal lattice vector. This geometry allows the study of transverse strains and/or

novel phonon coupling to x-ray diffraction. Asymmetric Laue diffraction can provide

complementary information since the generated strain will have a component along

the reciprocal lattice vector and will be discussed in the next chapter.

Traditional Laue diffraction is typically limited to very thin crystals (<10 µm) or

very large x-ray energies (>20 keV). Though thick crystals can be probed with high

energy x-ray photons, the generation and detection of these photons makes time-

resolved experiments difficult (APDs and photocathodes are not efficient detectors

of > 20keV photons). Nevertheless, coherent acoustic phonons with MHz frequencies

87
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Figure 6.1: The symmetric Laue geometry.

have been studied using 30keV x-rays in the Laue geometry[15].

There is, however, a diffraction effect which extends the probe depth of x-rays

regardless of the photon energy, x-ray anomalous transmission (see chapter III).

Utilizing x-ray anomalous transmission, a.k.a the Borrmann effect, crystalographers

have studied lattice dislocations and crystal defects in crystals that are much deeper

than the incoherent absorption depth [11]. Studies using the Borrmann effect in the

time-domain have been extremely limited[70, 71]. This chapter reports data on novel

time-resolved experiments using x-ray anomalous transmission.

6.1 Data

In the symmetric Laue geometry the lattice planes are oriented such that the re-

ciprocal lattice vector is perpendicular to the surface normal (figure 6.1). A 001 Ge

single crystal is oriented to diffract from the symmetric 220 diffraction plane with

10keV x-rays. An ultrafast laser impulsively heats the crystal surface, generating

a large surface strain. At large fluences (> 5 mJ
cm2 ) the generated thermal gradient

strains the crystal to such an extent that the x-ray anomalous transmission is de-

stroyed (figure 6.2). As the laser heats the sample the diffraction efficiency disappears
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Figure 6.2: Time-resolved anomalous transmission after intense laser excitation. 220
reflection (left) and 440 reflection (right)

in ∼100ns. As the crystal reaches a thermal equilibrium, the wave guide is restored

and the anomalous transmission recovers. However, if the laser pulse melts the ma-

terial (fluences >50 mJ
cm2 ) repetitive laser heating (∼ 106 laser shots) can permanently

strain the crystal through imperfections in the recrystallization process. This in-

duced static strain slowly reduces the average efficiency of the Borrmann effect to

zero.

The loss of x-ray anomalous transmission when a crystal experiences a thermal

gradient was observed in Borrmann’s original experiments [72]. Borrmann observed

that a thermal gradient of only 0.6 degrees Celsius is sufficient to destroy the anoma-

lous transmission. He determined that the thermal gradient generates a static stress

such that the x-ray wave guide is destroyed causing massive absorption. Experiments

performed in the Bragg geometry have indicated that ultrafast laser absorption can

cause a temperature rise at the crystal surface equaling many tens of degrees. This

evidence indicates the reduction in diffraction efficiency is due to the temperature

gradient generated by the laser pulse.
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Figure 6.3: X-ray transmission for the 220 symmetric reflection in 001 Ge as a func-
tion of time delay.

Reducing the incident laser fluence reduces the temperature gradient allowing

the observation of long term changes in the x-ray transmission. Figure 6.3 shows

the diffracted intensity of the forward and deflected beams as a function of time

delay (incident fluence ∼ 1 mJ
cm2 ). Immediately after the generation of the acoustic

pulse, the intensities of the two diffracted beams begin to oscillate. As the time

delay increases, the intensity of the forward and diffracted beams oscillate out of

phase with a period of ∼ 1.7ns. The amplitude of oscillations decreases with a decay

constant of ∼10ns.

When the time delay exceeds 27ns (after the acoustic pulse crosses the midpoint

of the crystal) the oscillations return. The oscillations grow in amplitude with the

same time constant and period that was observed at earlier time delays. However,

the observed modulations in the diffracted beams now oscillate in phase. At a time
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Figure 6.4: Time-resolved diffraction of the symmetric 220 reflection, front side ex-
citation.

delay of 55ns the amplitude of the oscillations reaches a maximum. This time delay

corresponds to the traversal time of the acoustic pulse through the 280µm thick

crystal.

Similar features are observed when the acoustic pulse starts at the input face of

the crystal (figure 6.4). The only obvious difference is that the relative phase of the

two diffracted beams changes. At times close to zero time delay the beams oscillate

in phase while at delays ∼55ns the beams oscillate out of phase. The relative phase

of the oscillations appears to be completely dependent on the location of the acoustic

pulse. A clear explanation of the observed data is provided by the x-ray dispersion

surface.
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6.2 Predictions using a Rotation of Basis

For crystals in the Laue geometry, the x-ray dispersion surface predicts that as

the crystal thickness changes, the forward and deflected beams will oscillate (the

Pendellösung effect). Dividing the Pendellösung period by the sound speed of Ge,

the observed period of oscillation is found. A simple model is presented below which

accurately predicts the observed data.

6.2.1 Two Crystal Model

As described in chapter III there are two linearly independent solutions to the

x-ray wave equation inside a perfect crystal, α and β. Due to the strong absorption

of the β solution, the exterior wave solutions will change in magnitude as the crystal

thickness changes. Localized static strains or crystal defects can rotate the (α β)

basis causing a change in the relative amplitude of the forward and deflected beams

[11]. Since the sound speed is much less than the group velocity of the x-rays, the

acoustic pulse will appear to be a static strained layer. If the spatial dimension of

the acoustic pulse is much less than that of a Pendellösung depth, this situation can

be described fairly well as two crystals separated by a very thin strained interface

(see figure 6.5).

To simulate this effect,the strained interface is treated as a simple rotation of the

α, β basis [73]: 
 cos Θ − sin Θ

sin Θ cos Θ





 α

β


 (6.1)

After the x-rays interact with the strained region, the transmitted x-ray fields evolve



93

Incoherent Heated Layer

Coherent Acoustic Pulse

Ultrafast Laser Excitation

Compression

Expansion

Figure 6.5: A schematic representation of the two crystal model.
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Figure 6.6: A simulation of the two crystal model.

as governed by the theory of dynamical diffraction. Figure 6.6 shows the result of this

calculation assuming that the acoustic disturbance moves from the output face anti-

parallel to the x-ray poynting vector. The amount of rotation used in the simulation

is π/40 radians.
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6.2.2 Mechanism

Although the simple rotation of basis appears to correctly predict the observed

modulations, the exact mechanism of the transfer is not immediately obvious since

the phonon wavevector, q, is perpendicular to the reciprocal lattice vector. Again the

x-ray dispersion surface provides clues to determining the mechanism of the effect.

In the symmetric Laue geometry, q is in the direction of the spacing of the dispersion

surfaces (figure 6.7). If the generated acoustic pulse has enough bandwidth to include

the momentum spacing of the two dispersion surfaces, the phonon can bridge the α

and β branches of x-ray dispersion surface causing a coherent transfer of population.

This effect has been observed in the frequency domain using narrow band acoustic

phonons[13].

When the acoustic pulse is close to the output face, the x-rays that interact with

the strained layer are completely dominated by the α solution since the β solution

has long since been absorbed. In the presence of the acoustic pulse the β solution

can be repopulated. Since this interface propagates, the effective crystal thickness

following the strained region changes over time. The diffracted intensities will then
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Figure 6.8: Time-dependent intensity oscillations of the forward 220 reflection is Ge.
Inset: the Fourier transform of the oscillations

beat against each other as a function of time via the Pendellösung effect[73].

If the acoustic disturbance is located closer to the input side, however, both the

β and α solutions are populated approximately equally prior to the interaction with

the strained layer. The strained layer will simply remix the solutions causing the

amount of population in each solution to change as a function of depth. Since there

is a large undisturbed crystal following the strained layer the β solution will be

absorbed quickly leaving only the α solution. Since α is the only solution to exist,

the beams will be modulated equally.
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6.3 Long Time Delays

After one round trip the two crystal model appears to break down(see figure 6.8).

Unlike the Bragg case, there does not appear to be a correlation between the peaks

of the transmission and the location of the acoustic pulse. The main feature of the

Fourier transform continues to be the wavevector of the dispersion surface. However,

other wavevectors are also apparent in the spectrum, such as the second harmonic.

The second harmonic may be due to the fact that at a crystal interface the acoustic

pulse propagates in both directions and that there are some two phonon processes

associated with the rotation of basis, but the exact nature of these other spectral

components is unclear.

As before, at certain time delays the forward and deflected beams oscillate out of

phase. The difference signal between the two diffracted intensities highlights this fact

(figure 6.9). Initially the two crystal model correctly predicts the x-ray transmission.

After a single round trip of the acoustic pulse, however, the oscillations in the x-ray

transmission becomes erratic until the difference signal almost becomes a continuous

wave.

Again, like the raw signal, the reason for the continuous Pendellösung oscillations

is not entirely clear. Although, the data reported in the previous chapter may lead

to an answer. As the pulse propagates through the crystal, it was seen that there was

significant dispersion to the acoustic pulse. This dispersion may allow components

of the acoustic pulse to redistribute the population of the α,β basis for an extended

period of time. Another possibility is that the static heated layer is interacting
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Figure 6.9: Difference of the forward and deflected intensity of the 220 reflection in
Ge. Inset: Fourier transform of the oscillations
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with the reflecting acoustic pulse. It is known from the Bragg data, that the static

heated layer will diffuse slowly into the crystal bulk. This static layer may distort

the crystal enough to either couple the x-ray dispersion surface and/or change the

boundary conditions of the acoustic pulse reflection.



CHAPTER VII

Time-Resolved X-ray Laue Diffraction: The

Asymmetric Reflection

The previous two chapters demonstrated the ability of time-resolved x-ray diffrac-

tion to study strain propagation. X-ray Bragg diffraction and symmetric x-ray Laue

diffraction, however, have conflicting limitations. X-ray Bragg diffraction can pro-

vide a precise study of strain, but x-ray probe depth is limited to the x-ray extinction

depth (or the x-ray absorption depth). Symmetric x-ray Laue diffraction can detect

crystalline strain very deep within crystals, but due to the direction of the recipro-

cal lattice vector, symmetric Laue diffraction is unable to precisely measure a laser

induced strain. Asymmetric Laue reflections can overcome these problems.

Unlike the symmetric Laue geometry, an asymmetric Laue reflection is one where

the reciprocal lattice vector is not perpendicular to the surface normal. Therefore, a

laser generated strain has a component along the reciprocal lattice vector, making the

strain detectable. At the same time, x-rays that diffract from an asymmetric Laue

plane can propagate via the Borrmann effect. These two facts make an asymmetric

reflection an ideal probe for strain pulses propagating through very thick crystals.

A new experimental problem arises due to the crystal asymmetry. The laser
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Figure 7.1: 202 diffraction efficiency under intense laser excitation.

generated acoustic pulse will not travel anti-parallel to the Poynting vector of the

diffracting x-rays. To compensate for this potential difficulty, the optical pulse illu-

minates a relatively large surface area. This provides a large spatial profile to the

propagating acoustic pulse and thus the spatial walk off between the acoustic pulse

and the x-ray probe is assumed to be negligible.

7.1 Experiment

A Ge 001 crystal is oriented to diffract from the 202 diffraction plane. The

asymmetry angle is 45 degrees for this reflection, midway between a symmetric Bragg

reflection and a symmetric Laue reflection. An ultrafast optical pulse generates an

acoustic disturbance on either face of the crystal.
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7.1.1 APD Data

Like the symmetric data, under intense laser excitation the diffraction efficiency

of the asymmetric reflection goes to zero for an extended period of time (see figure

7.1). Unlike the symmetric geometry, as the laser fluence is reduced the diffraction

efficiency of the forward beam does not recover. In figure 7.2 the peak diffraction

intensity of both the forward and deflected beams of the Ge crystal is shown as a

function of time delay. In this case the acoustic pulse was initially generated on the

output face of the crystal.

Immediately after the laser absorption (fluence ∼5 mJ
cm2 ), the intensity of the two

diffracted beams changes rapidly. The forward beam decreases while the deflected

beam increases by the same amount, indicating a coherent transfer of energy. Up to

70% of the x-rays are coherently transferred between beams. The time dependence

of this phenomenon is comparable to the x-ray pulse width indicating the switching

mechanism is at least as fast as the 100ps x-ray pulse width.

The population transfer for diffraction from the 202 diffraction plane (asymmetry

-45 degrees) is the mirror image of 202 case. The diffracted intensity of the forward

beam now decreases while deflected beam increases (figure 7.3). Again, the time-scale

for transfer appears to be limited by the x-ray pulse width.

The fast phenomenon does not appear to have an angular dependence. This may

be due to the wavevector selectivity of the Borrmann effect. In the strained region,

like the Bragg case, sidebands on the diffraction peak are generated. The modified

Laue condition cannot be satisfied, however, becasue of the wave vector selectivity of
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Figure 7.2: The peak diffraction efficiency of the asymmetric 202 Laue reflection as
a function of Laser/X-ray time delay.

the Borrmann effect. So unlike the Bragg case where sidebands are easily observed,

in the Borrmann geometry only those wave vectors which satisfy the Laue condition

propagate through the crystal.

Following the rapid population transfer, oscillations in the diffracted intensity

are visible. These oscillations are due to the bridging of the x-ray dispersion surface.

Following the method described in the preceding chapter, the acoustic pulse redis-

tributes the relative population of the α, β basis causing the onset of Pendellösung

oscillations.

The generation of an acoustic pulse on the input face of the crystal displays

similar features. As in the symmetric case, when the acoustic pulse is generated

on the input face both diffracted beams initially behave identically (see figure 7.7).



103

0 1 2 3 4 5 6 7 8

-4

-2

0

2

4

6

θ 
-θ

b [m
de

g]

0 1 2 3 4 5 6 7 8

-4

-2

0

2

4

6

∆ t [ns]

θ 
-θ

b [m
de

g]

Figure 7.3: X-ray transmission as a function of angle and time delay for the asymmet-
ric 202 Laue reflection. (top) forward beam, (bottom) deflected beam.
Adapted from [73].

Again this is due to the fact there is a large unperturbed region beyond the strained

crystal layer.

As the incident fluence changes, the efficiency of the fast transient changes as

well. As stated above, the maximum transfer appears to be ∼ 70%. As the fluence is

reduced, however, the efficiency of the switch changes but the resultant Pendellösung

oscillations appear to be unaffected (see figure 7.5). At low fluences (<1 mJ
cm2 ), the

Pendellösung oscillations and the fast transient start with the opposite phase. The

exact mechanism controlling this physical effect is unclear, but it could indicate the

length scale associated with the fast mechanism.

The last observed effect is that the decay constant of the increased beam changes

with incident fluence. The other beam, however, does not benefit from this decrease
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Figure 7.4: X-ray transmission as a function of optical pulse time delay of the asym-
metric 202 Laue reflection. The acoustic pulse is generated on the input
side of the crystal.
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Figure 7.5: The time dependent diffraction efficiency as a function of optical fluence.
black: 10 mJ

cm2 , red: 7 mJ
cm2 , green: 5 mJ

cm2 , purple: 3 mJ
cm2 , blue: 1 mJ

cm2
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diffraction efficiency, indicating this loss is not a unitary transfer of population. This

decay in diffraction efficiency is probably due to the strain components along the

direction of the reciprocal lattice vector. The x-rays that enter the strained region

can be diffracted out of the x-ray channel and absorbed by the remaining substrate.

As the fluence increases (and thus the magnitude of the strain) the fraction of the

incident x-rays that are ejected from the x-ray waveguide increases and thus the

amount of decay rises.

7.1.2 Acoustic Reflections

As the acoustic pulse approaches the opposite crystal face of the crystal, a ’Bor-

rmann revival’ is observed. As the transmission returns, Pendellösung oscillations

in the diffracted intensity are seen. Like the symmetric case, as the acoustic pulse

approaches the input face the oscillations in the two beams are in phase (figure 7.6).

As the acoustic pulse collides with the input face of the crystal, the intensity of the

forward beam is about 2.5 times that of the static crystal case or greater than the

sum of the two diffracted beams of an unstrained crystal.

This dramatic increase in the diffraction efficiency can be explained by the two

crystal model. In the static crystal case the sum of the output intensities can be no

larger than one half of the original input intensity due to the strong absorption of

the β solution. In the best case scenario the amount of increase in one beam due

to the rotation of the α, β basis on the output face of the crystal is only a factor

of 2. However, if the basis rotation occurs on the input face, the entire initial β

population can be transferred to the α solution, increasing the output of one beam
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Figure 7.6: X-ray transmission as a function of acoustic pulse time delay. The acous-
tic pulse is now approaching the input face of the Ge crystal. Adapted
from [73].

by upto a factor of 4. If the acoustic pulse originates from the front side of the

crystal, a similar diffraction revival is seen (figure 7.7). The observed Pendellösung

oscillations during the revival are now out of phase and the sum of the two diffracted

beams is ∼50% that of the unstrained crystal case, consistent with the two crystal

model.

These Borrmann revivals provide information on the partitioning of energy be-

tween the acoustic pulse and static heated layer predicted in the Thomsen model.

Although the strain generated by the static heated layer is in the same direction as

the acoustic pulse, the Borrmann revivals indicate that the static heated layer does

not play an important role in the diffraction experiments. This may indicate, as in

the Bragg experiments, that the static heated layer is considerably over estimated in
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Figure 7.7: X-ray transmission as a function of optical pulse time delay of the asym-
metric 202 Laue reflection. The acoustic pulse is generated on the input
side of the crystal.

the Thomsen strain model.

An attempt was made to explore the optical properties of the fast effect (figure

7.8). The incident optical light was frequency doubled using a non-linear crystal.

The optical penetration depth of the 420nm radiation in Ge (∼15nm) is significantly

less than the 840nm radiation (∼225nm).

The fast transfer of energy is not visible with ultraviolet radiation. This may be

due to the relatively low optical fluence and thus the acoustic strain amplitude is also

small. The other obvious fact is that there is no observation of a Borrmann revival.

This is probably due to the large wavevector of the acoustic pulse. In this case
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Figure 7.8: Time-Resolved diffraction of the asymmetric 202 reflection illuminated
using a 420nm optical pulse.

the acoustic pulse dispersion and absorption is significant. At the opposite crystal

face the remaining frequencies of the acoustic pulse are not be able to bridge the

dispersion surface.

As in the Bragg geometry, upon each acoustic pulse reflection a Borrmann revival

is observed (figure 7.9). Unlike the Bragg geometry, the efficiency of the Borrmann

revival is not static. When the acoustic pulse reflects from the input face, the peak

diffraction efficiency increases dramatically. As the acoustic pulse reflects from the

output face the peak diffraction efficiency is relatively weak, due to the absorption

of the β solution.

Upon closer inspection, the behavior of the generated Pendellösung oscillations

are not static over time. Figure 7.10 shows a time-resolved blow up of the acoustic

pulse after 1, 1.5, 6.5, and 7 round trips in the crystal. During the early bounces, the
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Figure 7.9: The Time-resolved Borrmann probe of an acoustic pulse launched from
the output face of the Ge.
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Figure 7.10: (a) temporal response after 1 round trip (b) 1.5 round trips (c) 7 round
trips (d) 6.5 round trips.

observed Pendellösung oscillations do not appear to have great contrast as well as

some temporally sharp features at the acoustic pulse reflection time. As the acoustic

pulse undergoes many reflections, the contrast of the Pendellösung oscillations in-

creases and the temporally sharp features are not observed. These two observations

may have a number of causes, some physical some experimental.

First, the Bragg experiments revealed that the spectral components of the acous-

tic pulse appear to disperse over many bounces, leading to the attenuation of the

high frequency components of the pulse. This dispersion of the acoustic pulse could

possibly lead to an increased coupling of the dispersion surface due to the extended
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spatial extent of the acoustic pulse, leading to larger Pendellösung oscillations. The

dispersion could also reduce any ’fast’ effects in the diffraction patterns since the

high frequency components are severely attenuated.

Second, this effect could possibly be explained by the spatial walk off of the

acoustic pulse. If the two crystal faces are not parallel, after many reflections the

acoustic pulse could have travelled a significant distance in the transverse direction

making a direct detection of the acoustic pulse by the x-rays impossible.

7.1.3 Acoustic Collisions

Although the x-rays diffract through the entire bulk of the crystal, the observa-

tional power of the asymmetric Laue reflection is limited by the absorption depth of

the β solution. In Ge, this limitation prevents the direct observation of the strain

pulse at depths deeper than ∼25 µm. The repopulation of the β solution deep

within the bulk of the crystal can circumvent this problem. In static crystals, buried

interfaces or lattice dislocations can repopulate the β solution after many absorption

depths[11]. Launching a second acoustic pulse, counter-propagating with the first, a

transient interface may allow the observation of a transient strain deep within the

crystal bulk.

In figure 7.11 two counter propagating acoustic pulses are generated simultane-

ously from opposite faces. As expected, immediately after the initial lattice expan-

sion an ultrafast energy transfer has taken place which decays quickly as the acoustic

pulses travel into the center of the crystal. At a time delay of ∼ 27.5ns a Borrmann

revival is seen. This time delay corresponds to the acoustic pulses travelling half way
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Figure 7.11: Time-resolved diffraction of the 202 reflection in Ge. The angular blow
up is the collision of two counter-propagating acoustic pulses. Adapted
from [73].

through the crystal bulk[73].

Like before, the Borrmann revival has oscillations associated with the increase in

x-ray transmission, however in this case the oscillation period is twice as frequent

as compared to the single acoustic pulse excitation. The reason for the frequency

doubling is because unlike the two crystal model introduced with the single acoustic

pulse, there now is a three crystal model (figure 7.12). The three crystals are a

single thin crystal contracting (expanding) at twice the speed of sound, sandwiched

between two thick crystals expanding (contracting) at the speed of sound. Since

the thin crystal is changing its thickness by twice the sound speed the Pendellösung

oscillations oscillate at twice the frequency.
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Figure 7.12: The three crystal model

7.2 What is the fast Mechanism?

In dynamical diffraction, the scale length of diffraction is given by the Pendellösung

depth. The fast coherent transfer of energy, however, does not appear to correspond

to acoustic pulse traversing the Pendellösung depth and thus is an unexpected phys-

ical phenomena. The use of other crystal species in the Laue geometry may shed

light on the mechanism on the ultrafast transfer of x-ray energy. GaAs and InSb

are ideal candidates due to their perfect crystal structure and their capability to

generate large strain pulses with an ultrafast optical pulse. The major difference

between the three semiconductors is the optical penetration depth; 100nm, 220nm,

and 1µm for InSb, Ge, and GaAs respectively. In theory this will determine the

central wavevector of the acoustic pulse.

7.2.1 Different Materials

The experiment was repeated using a 400µm thick piece of a 001 GaAs. Figure

7.13 shows data repeating the experiment using the 202 reflection in GaAs. Like

the Ge experiment, the acoustic pulse is generated on the output face of the crystal.

Immediately after the acoustic pulse generation, a coherent transfer of energy is

observed. The speed of the coherent switch is clearly longer than the x-ray pulse,
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Figure 7.13: X-ray transmission as a function of optical pulse time delay of the 202
asymmetric reflection in GaAs

∼300ps.

The experiment was repeated with a 400µm 001 InSb (figure 7.14). Due to

experimental constraints the acoustic pulse was generated on the input face of the

crystal. Again as the acoustic pulse is generated x-rays are coherently transferred

from one beam to another. However, like the Ge sample, the speed of the switch

appears to be less than the x-ray pulse width.

A simple calculation of the timescale of x-ray diffraction using an acoustic im-

pulse raises some questions of the mechanism of the ultrafast transfer of energy.

The Pendellösung depth of all three materials is ∼5µm where the speed of sound

is 4725m/s, 3400m/s, and 4820m/s for GaAs, InSb, and Ge in the 001 direction

respectively. At the output face of the Ge and GaAs the propagating x-rays are

purely α type. Due to boundary conditions, if an acoustic pulse is generated on the

output face, the acoustic pulse must travel at least one quarter of a Pendellösung

depth to have full transfer of energy from one beam to another. If the acoustic pulse
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Figure 7.14: X-ray transmission as a function of optical pulse time delay for the 202
asymmetric reflection in InSb.

is generated on the input face, as in the InSb case, the x-ray solution is an even

distribution of α and β type. This means that the acoustic pulse must travel one

half a Pendellösung depth to achieve a full transfer of energy.

In the GaAs case the propagation of the sound pulse through a quarter Pendellösung

depth is consistent with the measured time scale. The Ge and InSb data, however,

are not consistent with the sound speed and Pendellösung depth. This appears to

indicate a supersonic transfer of energy.

7.2.2 Streak Camera Data

To properly diagnose the fast mechanism, an x-ray streak camera is used to detect

picosecond changes in the diffracted x-ray intensity. The sweep speed of the streak

plates limited the timing resolution to ∼5ps. Due to experimental constraints, the

streak camera is only able to sample the forward diffracted beam. Using the 202

reflection, the drop speed is measured for Ge and InSb single crystals.
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Figure 7.15: X-ray streak camera data of the transmission efficiency of the asym-
metric 202 reflection in Ge. The blue (dotted) curve is the undisturbed
crystal, the red (solid) curve is the laser heated crystal.

Figure 7.15a illustrates the laser induced switching of the Ge single crystal on

a sub bunch timescale. The black curve represents the temporal shape of the x-

ray pulse through an undisturbed crystal. The red curve is the x-ray transmission

signal through a crystal undergoing laser illumination. When the laser pulse arrives

an immediate transfer of energy is apparent in the transmitted beam. The ratio

of the two streaks illustrates the time dependence of the fast switch (figure 7.15b).

Within 60 ps of illuminating the sample, 60% of the transmitted x-ray intensity is

switched. The fall time of this process appears to be ∼25ps which, if we assume that

the disturbance moves at the sound speed, represents a depth of ∼125nm or 2% of

a Pendellösung depth. Diffracting from the opposite asymmetry, the rising edge of

the population transfer can be measured. The rising edge appears to take place in a

time consistent with the falling edge (figure 7.16).

As the incident optical fluence increases, the switching efficiency increases cor-

respondingly (figure 7.17). This observation indicates that the efficiency of the fast
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Figure 7.16: Streak camera data of the 202 reflection in Ge.

switch is directly related to the amplitude of the generated strain.

The experiment was repeated for the 202 reflection in InSb. Figure 7.18 shows

the ratio of the laser induced effect to the undisturbed x-ray transmission. It is clear

that the laser induced effect is significantly faster than the Ge sample though the

efficiency is ∼ 30%. The x-ray transfer now appears to take place in ∼15ps. Again

assuming that the transfer is due to an acoustic pulse, this would represent a crystal

depth of ∼60nm or 1% of a Pendellösung depth.

It must be noted that in this case the drop is due to the front side excitation. In

the Pendellösung model, when compared to the back side excitation, the acoustic

pulse must travel twice as far to get a full rotation of the α, β basis. This could

imply that if InSb was excited on the output face, the drop time could be as fast as
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Figure 7.17: Switching efficiency as a function of optical fluence.

7ps.

If the fast switch can be described with dynamical diffraction, the switching

mechanism must be related to the Pendellösung depth. For this to occur, the driving

mechanism of the fast switch must be one or more of the following; the Pendellösung

scale changes dynamically with the laser induced strain, a supersonic strain is gener-

ated at the time of the acoustic pulse, or strain depth is significantly different from

the generally accepted values.

7.2.3 Change in Pendellösung depth

Dynamical diffraction predicts that the Pendellösung depth changes with the

diffraction angle. Changing the diffraction condition dynamically will change the

Pendellösung period over time. The Thomsen strain can effectively change the Laue
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Figure 7.18: The ratio of the laser heated and undisturbed streak camera data using
the asymmetric 202 reflection in single crystal InSb.

Material q (µm −1) ∆θ[mdeg] Effective Pendellösung Speed

InSb 10 25.4 .48µm 15 ± 5ps
Ge 4.5 11.6 .98µm 25 ± 5ps

GaAs 1.2 3.1 3.9µm 300 ± 50ps

Table 7.1: The change in the Pendellösung depth as a function of acoustic wavevector
for InSb, Ge, and GaAs.

condition at the surface and thus the Pendellösung depth since the strain is parallel to

the reciprocal lattice vector. There is some experimental evidence for this mechanism.

The simple scattering relation ∆θ ∼ q/G tan θB cos(φ) shows that that the deviation

of the diffraction angle is directly related to the momentum transfer. Assuming q

is related directly to the optical penetration depth the position of the sideband can

be calculated (table 7.1). There appears to be a relationship between the phonon

wavevector and the drop speed.

However, there a few problems with this explanation. First, it was shown in

chapter V that the effective initial strain depth in Ge is a couple of microns. This

indicates that the central phonon wavevector is actually 0.5µm −1 rather than 4.5µm

−1. This implies that the momentum of the acoustic pulse does not provide enough
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change in the diffraction condition.

Second, in the Thomsen model of strain there is a stationary heated compo-

nent that resides on the crystal surface. The stationary strain possesses the same

wavevector components as the acoustic pulse, which could indicate that the heated

region would change the diffraction condition enough to produce the necessary ef-

fect. However, after the acoustic pulse has propagated through one crystal thickness

a Borrmann revival is observed. This implies that the wavevector components are

not enough to change the diffraction condition to diffract out of the waveguide.

Finally, as the angle deviates from the Laue condition the efficiency of the transfer

via the Pendellösung effect changes. Assuming a 10mdeg deviation from the peak

of the rocking curve less than 10% of the x-ray energy is transferred from one beam

to the other. This is in direct conflict with the observed transfer of up to 70% of the

transmitted x-ray energy.

7.2.4 Shockwave

Another possible mechanism is the generation of a supersonic acoustic wave.

Previous experiments have shown that an optical pulse with enough intensity can

produce acoustic shocks in semi-conductors and metals. The generation of an acous-

tic shock could produce a strain wave a quarter Pendellösung period into the bulk

within 20ps.

There is a significant problem with this mechanism. The Bragg geometry is sen-

sitive to the arrival of any transient strain. The presence of a supersonic shock wave

would be apparent by the change in the Bragg condition at a time not correspond-
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ing to an integral number of acoustic round trips. The time dependent diffraction

efficiency in the Bragg geometry does not show the effects of a supersonic acoustic

wave.

7.2.5 Large Strain depths

The final possible method is the generation of acoustic strains at depths much

larger than the optical penetration depth. This could be possible by the supersonic

expansion of a dense electron-hole plasma. An ultrafast optical pulse has the ability

to generate large dense electron-hole plasmas at the surface of semi-conductor crys-

tals. This plasma would evolve on the timescale of diffusion, which if the plasma

were dense enough, could explain the fast transfer of x-ray energy.

There is some experimental evidence to support this explanation. The time re-

solved Bragg diffraction in Ge appears to indicate the existence of the electron hold

diffusion generating a very deep strain (see [25] and chapter V).

However, there is significant evidence which discounts this possibility. First, since

the diffusion constant is directly related to the plasma density, the initial strain depth

would be related to the optical fluence[43]. If the electron-hole plasma were very

dense (which would be required to reach the Pendellösung scale) the strain depth is

proportional to optical fluence. This would indicate that the timescale of the x-ray

transfer would also be proportional to the incident optical fluence. However, the

speed of the x-ray switch is observed to be independent with the incident optical

fluence, which implies that the electron-hole plasma is not very dense and thus the

strain would not be supersonic. The other problem is that the time resolved Bragg
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diffraction in InSb does not appear to support a electron plasma diffusion model.

This would indicate that the fast energy transfer is completely due to the strain

predicted by the Thomsen model.

In the end, the generation mechanism may be a combination of the effects de-

scribed above. The one observed effect that is not described by any of the proposed

methods above is the dependence on the asymmetry angle (i.e. diffracted from the

202 plane the transmitted beam goes down, diffracting from the 202 plane the trans-

mitted beam goes up). To fully resolve this mechanism it is necessary to study this

effect in more detail.



CHAPTER VIII

Conclusions

This work demonstrates the strengths of time-resolved x-ray diffraction for the

study of ultrafast lattice dynamics. The techniques developed in this thesis, in prin-

ciple, can be extended to the study of more complicated and faster crystal dynamics.

Future studies may include looking at higher frequency phonons (including optical

phonons) and using the diffraction effects described in the previous chapters to study

ultrafast dynamics in other systems.

8.1 High frequency acoustic phonons

The acoustic frequencies that are studied in this work are limited by the pene-

tration depth of the laser. Due to the simplicity of the systems studied here, each

crystal has a limited range of characteristic phonon frequencies that can be excited

by the laser system (∼40GHz). Recent experiments have extended this range with

the use of surface transducers [3, 4, 5].

The optical absorption depth is reduced significantly if the crystal surface is

coated with a thin layer of aluminum. The ultrafast generation of carriers inside

the aluminum coating generates a large surface strain which will propagate into the

123
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crystal substrate. Acoustic phonon frequencies up to 150GHz have been generated

and studied with optical scattering techniques. Due to the large frequency compo-

nents, acoustic pulse dispersion becomes very significant in these systems. The use

of time-resolved x-ray diffraction in these systems may prove fruitful in the study

acoustic pulse dispersion.

To study acoustic phonons with even larger frequencies requires more elaborate

crystalline systems. Crystalline superlattices support the generation of coherent

acoustic phonons, which possess frequencies as large as 1THz. The fundamental

oscillation of the phonon (q = 0) is the vibration of the superlattice itself. The large

wavevector of the crystalline superlattice is given to the acoustic phonon. There

are two other modes which possess momentum components that are laser dependent

(q = ±2klaser).

If the laser momentum is large enough, sidebands will be generated on both the

superlattice sideband as well as the main diffraction peak. Bragg diffraction could

be very successful at detecting these phonons since the system can be engineered

such that the sidebands are well off the diffraction peak. If the generated phonon

has a wavevector large when compared to the spacing of the dispersion surface, Laue

diffraction could also prove useful in the detection of these lattice vibrations.

Because acoustic phonons are the motion of the crystalline lattice planes the

central oscillation frequency is ultimately limited by the sound speed of the material.

Higher frequency lattice motion (1-40THz) is possible using optical phonons. The

amplitude of the oscillations has been shown to be as large as 1% of the equilibrium
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lattice spacing[36]. Although these oscillations are very large when compared to the

equilibrium lattice spacing, optical phonons possess very little momentum making

detection via x-ray diffraction difficult. There are two potential methods of detecting

these large lattice vibrations with x-ray diffraction; changing the crystal structure

factor and artificially increasing the optical phonon wave vector.

Since optical phonons are atomic motion within the unit cell, the structure factor

of a given diffraction plane (and thus the strength of the x-ray diffraction) may change

with the lattice vibration. Thus as the coherent phonon oscillates the diffraction ef-

ficiency will oscillate as well. For allowed diffraction peaks, a 1% lattice vibration

changes the structure factor by about 1%. The use of forbidden or quasi-forbidden

diffraction peaks may increase the visibility of the optical phonon oscillation. Since

a forbidden diffraction peak requires perfect alignment of the atoms within the unit

cell to remain forbidden, a 1% lattice vibration could change the structure factor of

the forbidden reflection by many times. Even though the structure factor of a forbid-

den reflection may change greatly, the diffraction efficiency will still be quite small

making phonon detection quite difficult. Using allowed reflections is for diffraction

experiments is preferred.

Although it may still be possible for an allowed x-ray reflection to detect this

lattice motion via a change in the structure factor, a larger phonon wavevector will

increase the phonon contrast with the background substrate. By adding a spatial

periodicity to the phonon, the effective wavevector of the optical phonon will increase.

A transient superlattice can be created with two mutually coherent optical pulses



126

-1 0 1 2 3 4 5 6

Time Delay [ps]

-40

-20

0

20

40

60

80

100

D
if
fr
ac
tio

n
In
te
ns
ity

[a
rb
.u

ni
ts
]

Pump

Pump

Probe

Diffracted Probe

Figure 8.1: Optical phonons oscillations seen using a transient grating pump-probe
technique

(see figure 8.1 inset)[74]. The two optical pulses can interfere causing an intensity

grating to illuminate the surface. The periodicity of the lattice is determined by

the vector difference of the two optical laser beams. The periodicity of the intensity

grating can be transferred to an optical phonon if the pump lasers can generate a

coherent optical phonon mode. Optical scattering experiments are able to detect

these high wavevector phonon oscillations by diffracting from the phonon grating

(see figure 8.1). X-rays can also diffract from this phonon grating making detection

of optical phonons possible[75].
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8.2 Other experiments

Ultrafast dynamics is not limited to crystalline motion. There are a number

of systems which can be stimulated to produce ultrafast dynamics; including liquids

and gasses [22, 76]. However x-ray pulses generated from a synchrotron currently can

only measure dynamics as fast as a streak camera (∼1ps). The techniques developed

in this work for the study of phonons can be utilized to generate sub-picosecond

x-rays from a standard synchrotron source.

High wavevector acoustic phonons change the x-ray diffraction efficiency causing

a change in the temporal profile of a diffracting x-ray pulse. In the Bragg geometry,

acoustic phonons have been shown to generate sidebands on a 10 ps timescale[19, 31].

In the Laue geometry, the same acoustic phonon can be used to reduce the diffraction

efficiency in ∼15ps. The combination of these two effects has the potential to generate

a 20ps x-ray pulse from the 100ps synchrotron pulse.

These same effects can be utilized with coherent folded acoustic phonons. Since

the acoustic phonon is coherent, two optical pulses can control the amplitude and

duration of the acoustic phonon and thus the time dependence of the sideband can

be controlled. The time dependence is limited to the phonon frequency, in this case

∼1ps. Generating high wavevector optical phonons by the method described above

can potentially overcome the picosecond barrier [75].
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APPENDIX A

Impulsive Stimulated Raman Scattering

This is a derivation of a calculation of the ion displacement upon the excitation of

a coherent optical phonon. This proof is based on the following papers [32, 8, 37, 38].

As with many calculations in Raman scattering many of the assumptions are just

approximations.

The Greens function solution for the phonon amplitude in terms of the force on

an ion is:

Q(z, t) ∼ 1

Ω0

∫
dτ sin(Ω(t − τ))F (z, t) (A.1)

where Ω0 is the central frequency of the incident excitation field. In the cgs units,

the force on an ion undergoing Raman transition is:

F (z, t) ∼ − 1

8π2

∫
dt1dt2dω1dω2E(z, t1)e

−iω1(t1−t)E∗(z, t2)eiω2(t2−t�Q (A.2)

where Eω is the field exciting the Raman transition, �Q is the Raman susceptibility

and can be defined in terms of the dielectric constant:

�Q ∼ ± dω

dQ

[
ε∗(ω1) − ε(ω2)

ω1 − ω2

]
(A.3)
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where dω
dQ

is some deformation potential of the system which generally not known.

Assuming the Raman tensor is susceptibility is constant over the band width of the

excitation pulse:

�Q ∼ ± dω

dQ

[
ε∗(ω) − ε(ω)

Ω

]
ω1+ω2

2

(A.4)

The complex dielectric constant of an ion as a function of excitation frequency is

given by:

ε(ω) = ε1 + iε2 = 1 +
C

ω2
0 − ω2 − 2iωΓ

(A.5)

using this definition equation A.4 becomes:

�Q ∼ dω

dQ

[
∂ε1

∂ω
− 2iε2

Ω

]
(A.6)

In the special case of a semi-metal, the imaginary component of the dielectric con-

stant is much larger the real component. This means that the Raman tensor can be

approximated as:

�Q ∼ − dω

dQ

[
2iε2

Ω

]
(A.7)

Taking the fourier transform of equation A.2 the force becomes:

F (z, Ω) = − 1√
8π

∫
dωE(z, ω)E∗(z, ω − Ω)�Q(ω, ω − Ω) (A.8)

Transforming this equation back:

F (z, t) = − 1

4π

∫
dΩdωeiΩtE(z, ω)E∗(z, ω − Ω)�Q(ω, ω − Ω) (A.9)

Thus equation A.1 becomes:

Q(z, t) ∼ − 1

4πΩ0

∫
dτdΩ sin(Ω(t − τ))dωeiΩtE(z, ω)E∗(z, ω − Ω)�Q(ω, ω − Ω)

(A.10)
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The incident electric field can be written as:

E(z, ω) =
2E0(ω)

ηω
e−iωnz/ce−αz/2 (A.11)

where α is the absorption depth, E0(ω) is the incident field, and η(ω) ≡ 1 + n(ω) +

ik(ω).

Assuming that the phonon field is harmonic, the field amplitude can be written

as:

Q(z, t) =
1

2i

[
Q+(z)e−iΩ0t − Q−(z)eiΩ0t

]
(A.12)

the phonon field at the surface can be reduced to:

Q±(0) =
2

Ω0

∫
E0(ω)E∗

0(ω + Ω0)�Q(ω, ω ± Ω0)

η(ω)η(ω ± Ω0)
(A.13)

Assuming that ηω, E(ω), and �Q(ω) is constant over the bandwidth of the excitation

field then the field amplitude is:

|Q(0, 0)| ∼ E(ω)E∗(ω)�Q(ω)

Ω0η2(ω)τl

(A.14)

If the material is a semi-metal, �Q may be substituted and thus:

|Q(0, 0)| ∼ E(ω)E∗(ω)

Ω0η2(ω)τl

∂ω

∂Q

2iε2�

�Ωτl

(A.15)

The detection of the optical phonons in opaque material is usually accomplished

by measuring the change in surface reflectivity.

δR ∼ ∂R

∂Q
Q (A.16)

∼ ∂R

∂ε
(ω)

∂ε

∂ω
(ω)

∂ω

∂Q
(ω)Q (A.17)
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The total reflectivity change due to the phonon is:

∆R

R
=

∫
dωδR|el(0, ω)|2∫
dωR|el(0, ω)|2 (A.18)

where |el(0, ω)|2 is the intensity of the optical probe. Assuming that the frequency

spread of the probe pulse is small to any frequency dependent variable, the probe

pulse can be approximated by a delta function. Making a change of variables (dE =

�dω) the two integrals can be solved and thus the normalized differential optical

reflectivity is:

∆R

R
∼ D

∂ω

∂Q
Q� (A.19)

where D = 1
R(E)

∂R
∂ε

(E) ∂ε
∂E

(E).

In the specialized case of a semi-metal equations A.15 and A.19 can be combined

to attain an approximate amplitude of the displacement of a specific atom in the

unit cell.

Q2 ∼ E(ω)E∗(ω)

Ω0η2(ω)τl

∂ω

∂Q

2iε2

�Ωτl

∆R

R

1

D
(A.20)

The displacement of an ion due to a phonon oscillation can be written in the form:

ui(Ωt) ∼
√

V

Mi

[Qe−iΩt + Q∗eiΩt] (A.21)

where V is the volume of the unit cell and Mi is the mass of the specific atom.

Solving for u2:

u2 ∼ ∆R

R

Io(
2iε2
�Ω

)2

ερmΩτlD
(A.22)

where Io is the intensity of pump in statvolt2s2

cm2 and ρm is the density of the material

in g

Å3
. For bismuth, 2iε2

�Ω
∼ 103 and D ∼ 10−2 this equation can be simplified to:

u2 ∼ ∆R

R

Io105

|ε|ρmΩτl

(A.23)
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In practical experimental units:

u2[Å2] ∼ ∆R

R

I[ mJ
cm2 ]377

ρ[amu

Å3
]ν[THz]|ε| (A.24)
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APPENDIX B

Deriving the Dispersion Surface

The Ewald construction provides a simple, yet effective method of predicting x-ray

reflections. However, to model the response of an x-ray reflection when equation 3.2

is almost satisfied, we must solve Maxwell’s equations inside the crystal. Generally

solving Maxwell’s equations inside a solid object is difficult, however, if we are dealing

with a perfect crystalline body, we can solve for the field amplitudes in a straight

forward manner. Batterman and Cole[50] provide a straight forward method of

calculating the field amplitudes inside a crystal.

Maxwell’s equations for the propagation of electro-magnetic waves can be written

in the form:

∇× E = −∂B

∂t
(B.1)

∇× H =
∂D

∂t
(B.2)

where:

D = ε0(1 + ψ)E (B.3)

where ψ is the complex dielectric constant. Assuming that we have a periodically

varying index of refraction (as we do in a perfect crystal), we can write the solution
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of the fields as a Bloch function[52]:

A =
∑
H

AHeiωt−2iπkH ·r (B.4)

where A can be any of the components of the electro-magnetic field (D,E, or B).

Placing this solution into equations B.1 and B.2 the field amplitudes can be solved.

Placing the solution for E and B into equation B.1 we find:

−i2πeiωt
∑
H

(KH × EH)e−i2πKH ·r = iωeiωt
∑
H

BHe−i2πKH ·r (B.5)

From the rules of orthogonality, the amplitudes of each Fourier component must be

equal so that:

KH × EH = ω/(2π)BH (B.6)

Repeating this process for equation B.2 we find that:

KH × HH = −ω/(2π)DH (B.7)

Taking the cross product of KH with both sides of equation B.6 and using the

relationship found in equation B.7 the following set of equations are obtained:

KH × (KH × EH) = −ω2/(4π2)DH (B.8)

Since we have assumed that ψ is spatially periodic, we can break ψ into its fourier

components.

ψ =
∑
H

ψHe−iπnH (B.9)

This transforms equation B.3 into:

D = ε0(1 + ψ0EH +
∑
P �=H

ψH−PEP ) (B.10)
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Substituting this equation into equation B.8 we find a system the following system

of equations:

[k2(1 + ψ0) − (KH · KH)]EH + k2
∑
P �=H

ψH−PEP + (KH · EH)KH = 0 (B.11)

This system of equations is completely general if we neglect the time dependence

of the fields. Assuming that we are near a strong reflection and that only two fields

are significant, we can further simplify this equation into 2 coupled linear equations.

(k2(1 + ψ0) − (K0 · K0))E0 + k2PψHEH = 0 (B.12)

k2PψHE0 + (k2(1 + ψ0) − (KH · KH))EH = 0 (B.13)

where K0 · K0 = 2Θ, P = 1, cos 2Θ if the x-rays are σ or π polarized respectively

and ψ0,H is defined in equations D.3 and D.4. This system of equations only has a

solution if the following determinate is equal to zero:∣∣∣∣∣∣∣
k2(1 + ψ0) − (K0 · K0) k2PψH

k2PψH k2(1 + ψ0) − (KH · KH)

∣∣∣∣∣∣∣
= 0 (B.14)

To help solve this determinant we introduce two variables ξ0,H

ξ0 ≡ (K0 · K0)
0.5 − k(1 +

1

2
ψ0) (B.15)

ξH ≡ (KH · KH)0.5 − k(1 +
1

2
ψ0) (B.16)

Physically these two variables represent the difference between the wavevectors of

the two wave solutions and the incident wave vector corrected for the average index

of refraction. Using this formalism, the equation B.14 is zero when:

ξ0ξH =
1

4
k2P 2ψHψH̄ (B.17)

This solution to the x-ray wave equation is referred to as the dispersion surface.
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APPENDIX C

Propagating Field Solutions In the Laue Geometry

The x-ray dispersion surface provides an elegant method of determining the prop-

agating solutions to the x-ray wave equation (see [50] for more details on this section).

The following equation is the mathematical representation of the x-ray dispersion

surface assuming that there is only two wavefields inside the crystal.

ξ0ξH =
1

4
k2P 2ψHψH̄ (C.1)

where:

ξ0 ≡ (k0 · k0)
0.5 − k(1 +

1

2
ψ0) (C.2)

ξH ≡ (kH · kH)0.5 − k(1 +
1

2
ψ0) (C.3)

k is the wavevector of the incident light, and P=1,cos 2θ depending on the polariza-

tion of the x-ray field. As the crystal orientation changes, ξ0 and ξH will also change

accordingly. Using some simple assumptions and geometry, an analytic solution for

the angular dependence of ξ0,H may be obtained.

All of the angular dependence is represented with the complex wavevectors of the

particular solutions. If it is assumed that the magnitude of the real parts of k0,H are
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much larger than the complex component then:

k0,H · k0,H ∼ (k
′
0,H)2 − 2ik

′
0,Hk

′′
0,H cos β (C.4)

where cos β is the angle between k
′
and k

′′
. Substituting this value into the equations

for ξ:

ξ0 	 k
′
0 − k

′′
0 cos β0,H − k(1 +

1

2
ψ0) (C.5)

ξH 	 k
′
H − k

′′
H cos β0,H − k(1 +

1

2
ψ0) (C.6)

Recalling figure 3.3, if it is assumed that P0 and PH are in approximately the

same direction as k and kH , then:

k
′
0 	 k − qn · s0 (C.7)

k
′
H 	 PH − qn · sH (C.8)

where q is the vector between P and the tie point, s is the unit vector along the 0

or H directions, and n · s0,H ≡ γ0,H . Noting that:

PH = k − LP sin 2θ = k − k∆θ sin 2θ (C.9)

(where LP/k ≡ ∆θ) and assuming that cos β0,H ∼ γ then the explicit angular

dependence of ξ0,H can be written.

ξ0 =
1

2
kΓF0 − qkγ0 (C.10)

ξH =
1

2
kΓFH − qkγ0 − k∆θ sin 2θ (C.11)

Using equation 3.8 we can eliminate q and have a solution for ξ0,H as a function of
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diffraction angle:

ξ0 = 0.5k|P ||b|0.5Γ[FHFH ]0.5[η ± (η2 +
b

|b|0.5
)0.5] (C.12)

ξH = 0.5k|P | Γ

|b|0.5
[FHFH ]0.5[η ± (η2 +

b

|b|0.5
)0.5]−1 (C.13)

Using the surface boundary conditions and the solution for ξ0,H the propagating

field solutions can be solved. If the crystal is in the Laue geometry (b > 0), the

angular deviation of the crystal, η (see equation 3.13), can be rewritten into the

form:

η ≡ sinh ν (C.14)

This form simplifies ξ0,H to:

ξ0 = 0.5k|P ||b|0.5Γ[FHFH ]0.5e±ν (C.15)

ξH = 0.5k|P | Γ

|b|0.5
[FHFH ]0.5e±ν (C.16)

Combining equation 3.16 with the solution for ξ we find:

EH

E0

= ∓
( |P ||b|0.5

P

)
[FHFH ]0.5

FH

e±ν (C.17)

The sign of the equation depends on which branch the tie point is located on. In the

Laue geometry the initially boundary conditions are that all of the x-rays are in the

forward direction:

E0 = E0α + E0β

0 = EHα + EHβ

Using the boundary conditions along with the ratio for EH

E0
the following initial fields
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are found:

E0α = Ei
e−ν

2 cosh ν

E0β = Ei
eν

2 cosh ν

EHα = −Ei

( |P ||b|0.5

P

)
[FHFH ]0.5

FH

1

2 cosh ν

EHβ = Ei

( |P ||b|0.5

P

)
[FHFH ]0.5

FH

1

2 cosh ν

Using these coefficients the propagating wave solutions are determined:

E0α = CE0e
−νe−2πi((K

′
0α+iK

′′
0α)·r) (C.18)

EHα = −CDE0e
−2πi((K

′
Hα+iK

′′
Hα)·r) (C.19)

E0β = CE0e
−νe−2πi((K

′
0β+K

′′
0β)·r) (C.20)

EHβ = CDE0e
−2πi((K

′
Hβ+iK

′′
Hβ)·r) (C.21)

where:

C =
e2πivt

2 cosh ν

D =
|P |
P

|b|0.5 [FHFH ]0.5

FH
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APPENDIX D

Deriving the Takagi-Taupin Equations

The following proof is modelled after Taupin’s original paper[55] deriving the

differential equations that define dynamical diffraction theory. A similar proof was

published by Takagi[54] and some of the steps in this proof have been influenced

from that paper.

To calculate the wave fields diffracting from a perfect or almost perfect crystal,

one must take into account the periodically varying index of refraction inside the

crystal. To determine the magnitude of the diffracted waves we will solve the wave

equation inside the crystal. The wave equation inside the crystal is:

∇×∇× (1 − ψ)D =
4π2

λ2
D (D.1)

where

(1 − ψ)D = ε0E

and where ψ is a spatially varying dielectric function defined by

ψ =
∑
H

ψHe−ieπnH (D.2)
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and

ψ0 = −λ2re

πV
F0 (D.3)

ψH = −λ2re

πV
FH (D.4)

The solutions for the wave fields are generally complicated, but since we are in a

regime of a periodic dielectric constant, the displacement fields are defined by Bloch

waves of the form:

D =
∑
H

DHeiωt−2iπk (D.5)

Thus

(1 − ψ)D = eiωt
∑
H

QHe−i2πΦH (D.6)

where

QH = DH −
∑

L

ψH−LDL (D.7)

ΦH = k · r − G · u (D.8)

where u represents the positions of the atoms away from equilibrium. In this term,

the strain or lattice defect may be taken into account. By placing equations D.7 and

D.8 into the wave equation, one can solve for the amplitude of the waves D0,H .

To help solve for the field amplitudes, we use the vector identity:

∇×∇× A = ∇(∇ · A) −∇2A

Also expressed as:

∇×∇× Ai =
∂2Ak

∂xi∂xk

− ∂2Ai

∂xk∂xk

(D.9)
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Using this identity in conjunction with the Bloch fields, the wave equation can be

simplified to a set of coupled differential equations.

First we solve the wave equation by solving for the left side of equation D.1.

Using the vector identity described above we can simplify the equations. Putting

the Bloch solution into the first half of equation D.9, we find that:

∂2(1 − ψ)Dk

∂xi∂xk

=
∂

∂xi

(e−i2πΦH
∂QHk

∂xk

− i2πQHkKHke
−i2πΦH ) (D.10)

=
∂2QHk

∂xi∂xk

− i2π
∂QHk

∂xk

KHi − i2π
∂QHk

∂xi

KHk

−4π2QHkKHkKHi − i2πQHk
∂KHk

∂xi

(D.11)

where

∂2QHk

∂xi∂xk

= ∇(∇ · Q)

∂QHk

∂xk

KHi = KH∇ · QH

QHkKHkKHi = (KH · QH)KH

∂QHk

∂xi

KHk + QHk
∂KHk

∂xi

= −∇(KH · QH)

The second half of equation D.9 is then very similar:

∂2(1 − ψ)Di

∂xk∂xk

=
∂

∂xk

(e−i2πΦH
∂QHi

∂xk

− i2πQHiKHke
−i2πΦH ) (D.12)

=
∂2QHi

∂xk∂xk

− i2π
∂QHi

∂xk

KHk − i2π
∂QHi

∂xi

KHk

−4π2QHiKHkKHk − i2πQHi
∂KHk

∂xk

(D.13)
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where

∂2QHi

∂xk∂xk

= ∇2Q

∂QHi

∂xk

KHk = KH
∂QH

∂r

QHiKHkKHk = K2
HQH

QHi
∂KHk

∂xk

= QH∇KH

Taking the difference of equation D.11 and D.13 we can solve for the left side of

equation D.1:

∇×∇× (1 − ψ)D =
∑
H

e−i2πΦH (4π2(K2
HQH − (KH · QH)KH)

+i4πKH
∂QH

∂r
− i2π∇(KH · QH) − i2πKH∇ · QH

+i2πQH∇KH −∇2Q + ∇(∇ · Q)) (D.14)

Combining this result with the right side of equation D.1 a solution for the field

amplitudes may be obtained. Thus the full wave equation looks something like:

4π2

λ2

∑
H

DHe−i2πΦH =
∑
H

(...)e−i2πΦH (D.15)

Using Fourier’s trick, the coefficients of each of the fourier components are equal:

(...) − 4π2

λ2
DH = 0

Taking the dot product of both sides with QH we find that following equation holds:

0 = 4π2(K2
HQ2

H − K2
0(DH · QH) − (KH · QH)2) + i2πKH∇Q2

H

−i2πQH · ∇(KH · QH) − i2πQH · KH∇ · QH

+i2πQ2
H∇KH − QH · ∇2Q + QH · ∇(∇ · Q) (D.16)
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By substituting equation D.7 into the DH term the entire equation can be ex-

pressed completely by QH .

K2
0(DH · QH) = K2

0Q
2
H + K2

0

∑
L

ψH−LDL · QH (D.17)

Combining the left side of this equation with the first term in equation D.16, we find:

K2
HQ2

H − K2
0Q

2
H = (K2

H − K2
0)Q2

H

Using the law of cosines:

K2
H = H2 + K2

0 − 2H · KH

and defining the function

αH ≡ λ2(G2 − 2K0 · G) (D.18)

2(Θ − ΘB) sin(2ΘB) (D.19)

we find that

K2
HQ2

H − K2
0Q

2
H = αHK2

0Q
2
H (D.20)

By substituting this result into equation D.16, we find:

0 = 4π2(αHK2
0Q

2
H − K2

0

∑
L

ψH−LDL · QH − (KH · QH)2)

+i2πKH∇Q2
H − i2πQH · ∇(KH · QH) − i2πQH · KH∇ · QH

+i2πQ2
H∇KH − QH · ∇2Q + QH · ∇(∇ · Q) (D.21)

This equation is completely general for any type of incoming wave front or any

strained crystal. However, equation D.21 is very complicated to integrate thus the
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field amplitudes are very difficult to calculate. By making some simple physical

constraints we can greatly reduce the complication of this equation.

First we assume that any strain in the crystal is macroscopic in its origin. That

is, the crystal is almost perfect allowing us to make the simplification that only the

1st order terms are important and that ∇KH ∼ 0[54]. We will also assume that

since the crystal is almost perfect, that KH is almost perpendicular to QH such that

KH · QH ∼ 0. Making these assumptions we find that equation D.21 reduces to:

4π2(αHK2
0Q

2
H − K2

0

∑
L

ψH−LDL · QH) + i2πKH∇Q2
H = 0 (D.22)

If the dielectric constant is much smaller than 1 (typically ψ ∼ 10−5), then QH ∼ DH

and the equation above reduces to:

4π2(αHK2
0D

2
H − K2

0

∑
L

ψH−LDL · DH) + i2πKH∇D2
H = 0 (D.23)

Defining DL · DH ≡ DLDH cos γ and dividing through by 4π2K2
0 the equation be-

comes:

αHDH −
∑

L

ψH−LDL cos γ +
iλ2

2π
2KH∇DH = 0 (D.24)

where cos γ = 1 when the x-ray polarization is in the plane of incidence and cos γ =

cos 2θ when the x-ray polarization is out of the plane of incidence.

This is the fundamental system of equations that describe dynamical diffraction

theory. In general the sum is infinite so that calculating the fields is nontrivial.

However, if one is in a region where there are only two strong fields (i.e. near a

Bragg peak) and the x-ray polarization is in the plane of incidence the system can
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be simplified further:

iλ

π

∂DH

∂xH

= ψ0DH + ψHD0 − αHDH (D.25)

iλ

π

∂D0

∂x0

= ψ0D0 + ψHDH (D.26)

where

r = x0s0 + xHsH

s0 = λK0

sH = λKH

This system of equations is known as the Takagi-Taupin equations for dynamical

diffraction.
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APPENDIX E

Time-Resolved Dynamical Diffraction Program

This program is an adaptation of the algorithm described in chapter III. This

program is written for use in the programming language of MATLAB.

Main Program

%Program By Matt DeCamp 2000
%Algorithm found in C.R. Wie et.al. J. Appl. Phys vol. 59 pg 3743
% globals and a few touches added by d reis if blame be necc.

%define some constants
plank=6.626e-34; light=3e8; ev=1.6e-19;
re=2.82e-15; %classical electron radius [m]
fwhmFact=2*sqrt(2*log(2)); % rms = fwhmFact* fwhm

%define and set global variables and others
global gEnergy gLambda
gEnergy=10000; %Energy of the x-ray
gLambda=plank*light/ev/gEnergy; %wavelength of the x-ray

%scattering factors
global fin fsb;
fGe=13.0186+i*0.613322;fin=fGe;fsb=fGe; %scat. Ge 10kV put into InSb for simp.
%fin=43.185+i*3.3742; %scattering factors for Indium for 10 kV @10 deg
%fsb=44.6864+i*3.8673; %scattering factors for antimony for 10kV@10 deg

%polarizabilities, directions, etc.
global gPsi01 gPsi02 gPsiH1 gPsiH2; global gG gK gGamma0 gGammaH gBeta;
global gA0 gVol; global gThetaB gSin2QB gTanQB;

%gA0=6.4784e-10; %a0 for InSb
%gVol=2.72e-28; %unit cell volume
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gA0=5.6578e-10; %Germanium
gVol=gA03̂;
gPsi01=18.163e-6; % Average index for Germanium at 10keV
gPsi02=3.51e-7;
%gPsi01=2.014e-5; %Average Index for InSb at 10keV
%gPsi02=14.64e-7;

%calculate complex index for the Bragg
orientation=[4 0 0]; %hkl
[Freal, Fimag]=structurefactor2(orientation)
gPsiH1=-re/pi*gLambda2̂/gVol*Freal; %get from structure factor to psi
gPsiH2=-re/pi*gLambda2̂/gVol*Fimag;
%sinChi=1; %Normal Polarization
sinChi=cos(2*gThetaB); %P-Polarization
gPsiH1=abs(gPsiH1)*sinChi;
gPsiH2=abs(gPsiH2)*sinChi;

%currently there is no asymmetry here
gGamma0=sin(gThetaB); %cosine of the incident wave
gGammaH=sin(gThetaB); %cosine of the diffracted wave
gK=gPsiH2/gPsiH1; %k-factor
gBeta=gGamma0/gGammaH; %this is the asymmetry angle
gG=-(1+gBeta)*gPsi02/2/abs(gPsiH1)/sqrt(gBeta);

%other globals
global gRes gNumber gAlpha0;
gRes = (0.0001*pi/180.0)̂-1; %1/res = deltatheta step size in Rads
gNumber = 300; %number of angular steps
scaledegrees=180/pi/gRes; % convert to degrees

%these are the stepsizes
timesteps=50; %in ps
distancesteps=20; %in nm;
gAlpha0=[-2*gNumber/3:gNumber/3]*(-2)*gSin2QB/gRes; %angular offset
gNumber=size(gAlpha0,2); %just in case gNumber originally even

fluence=input(’what is the incident fluence (mJ/cm2̂)? n’); %mj/cm2̂

%initialize the time dependent strain function
%strainfun = timestrain(fluence,timesteps,distancesteps,0); %InSb strain function
strainfun = Getimestrain(fluence,timesteps,distancesteps,0); %Ge strain function

%These are the axis scales
subplot(2,2,1);
[time,distance]=size(strainfun);
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xscale=-gAlpha0*scaledegrees/gSin2QB/2*gRes;
xscale2=-((gNumber+100)/2-1)*scaledegrees:1*scaledegrees:... ((gNumber+100)/2-
1)*scaledegrees;
d=0:.001*distancesteps:(distance-1)*.001*distancesteps;
yscale=0:timesteps:(time-1)*timesteps;

%initializing curves
x =initialcurve3; %Darwin Curve substrate

%the angular convolution formula
convdegrees=.003/fwhmFact; %convolution fullwidth
a=1:100;
b=exp(-(a-50).2̂/(2*(convdegrees/scaledegrees)2̂));

%plotting the substrate rocking curve with the angular convolution
xsmooth=conv(abs(x.2̂),b); peak=max(xsmooth);
max2=length(xsmooth); subplot(2,2,2); plot(xscale2,xsmooth);
title(’Rocking curve of the substrate (convultion included)’);
xlabel(’Delta Theta (degrees)’); xold=x; subplot(2,2,3);
title(’Current Rocking Curve’); xlabel(’Delta Theta (degrees)’);

%drawing the strain function
subplot(2,2,1);
title(’Strain function’);
xlabel(’Depth (microns)’);
ylabel(’Strain’);
output=zeros(time,gNumber); drawnow;

Freal=abs(Freal);
%Thickness steps in units of the diffraction scale

thickness=2.818e-15*gLambda*Freal/gVol...
/sqrt(gGamma0*gGammaH)*distancesteps*1e-9;

%This is the main loop for dynamical diffraction
%it can be sped up by commenting out the plots
%it can also be sped up with the unequal bins

equalbin=0; %equalbin==0 unequal
output(1,:)=abs(x’).2̂; %make sure 1st curve is ”virgin”
for t=2:time;

%determine the depth dependent strain subplot(2,2,1);
strain = strainfun(t,:);
xold=x;

%perform the rocking curve analysis of the strain if (equalbin =0)
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%old method with equal bins
for depth = distance:-2:1
xnew=multilayer2(strain(depth), strain(depth-1),... thickness,xold);
xold=xnew;
end;
plot(d,strain,’b’);
else

%new method with unequal bins: caution numerical errors
[layer,theStrain]=unequal(strain,distance,0.0001);
numPoints=size(layer,2);
for depth = numPoints:-2:2; %stop at 2 in case odd
layerThick=thickness*(layer(depth)-layer(depth-1));
xnew=multilayer2(theStrain(depth), theStrain(depth-1)... ,layerThick, xold);
xold=xnew;
end;
plot(layer*0.001*distancesteps,theStrain,’r+’);
hold on;
plot(d,strain,’b’);
hold off;
end

% plot strain
title(’Strain function’);
xlabel(’Depth (microns)’);
ylabel(’Strain’);
drawnow;
subplot(2,2,3);

%calculated Rocking curves
output(t,:)=abs(xnew’).2̂; %this is the unconvoluted picture
new=conv(output(t,:),b);
newoutput(t,:)=new; %this is with the convolution new=new/max(new);

%plot Calculation
plot(xscale2,new);
title(’Current Rocking Curve (no convolution included)’);
xlabel(’Delta Theta (degrees)’);
drawnow;

%end of main loop
end;

%plotting the unconvoluted data
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subplot(2,2,4);
surf(xscale,yscale,output);
title(’Time-dependant diffraction curve (no convolution)’);
xlabel(’Delta Theta (degrees)’);
ylabel(’Time (ps)’);
shading interp; view(2); axis tight;

%plotting the convoluted data
subplot(2,2,3);
surf(xscale2,yscale,newoutput);
title(’Time-dependant diffraction curve (convolution with Si)’);
xlabel(’Delta Theta (degrees)’);
ylabel(’Time (ps)’);
shading interp; view(2); axis tight;
save(’temp.mat’); ’data saved in temp.mat’

Strain Routine

%This is the calculation of the time dependant Strain Profile

function [strain]= timestrain(fluence,timesteps,distancesteps,conv);

%contstants
intensity=fluence*10; %converting to J/m2̂
R=0; %.17; %this is the optical surface reflectivity;
absorb=20200; %laser absorbtion length in Angstroms
density=5.3234e3; %kg/m3̂
specificheat=321.9; %J/kg/K
beta=6.1e-6; %1/K
bulk= 1/.442e-10; %N/m2̂
sound=5000; %m/s
area=3e-6; %m2̂
taueph=10; %electron phonon relaxation time in ps
poisson=bulk*3/density/sound2̂;
length=absorb*1e-10; %absorbtion length in meters
C=specificheat*density;
abslength=length*1e9; %absorbtion depth in 1 nm
v=sound/1000; %speed of sound in 1nm/1picoseconds

%allow user input on maximum strain or optical fluence
if (fluence>0)
coeff=(1-R)*intensity*beta/length/C*poisson
else
coeff=-fluence;
end
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z= 1:4000; %Number of spatial steps
zprime=z.*distancesteps;
aa=0.5; %phonon amplitude aa=0.5 is normal
fudge=1; %phonon asymmetry
%strain0(1,:)=0;

%main loop
for t =2:200; %number of time steps

% For the phonon only strain0(t,z)=coeff*(exp(-zprime/abslength).*...
(.5*exp(-v*(t-1)*timesteps/abslength))-...
.5*exp(-abs(zprime-v*(t-1)*timesteps)/abslength).*...
sign(zprime-v*(t-1)*timesteps));

%Thomsen model
strain0(t,z)=coeff*(exp(-zprime/abslength).*(1-aa*exp(-v*(t-1)...
*timesteps/abslength))-aa*exp(-abs(zprime-v*(t-1)...
*timesteps)/abslength).*sign(zprime-v*(t-1)*timesteps));

%asymmetric acoustic pulse
if sign(z*distancesteps-v*(t-1)*timesteps)*2¿0
strain0(t,z)=coeff*(exp(-z*distancesteps/abslength).*...
(1-aa*exp(-v*(t-1)*timesteps/abslength/10))...
-aa*fudge*exp(-abs(z*distancesteps-v*(t-1)*...
timesteps)/abslength).*sign(z*distancesteps-v*(t-1)*timesteps));
else
strain0(t,z)=coeff*(exp(-z*distancesteps/abslength).*...
(1-aa*exp(-v*(t-1)*timesteps/abslength))...
-aa*exp(-abs(z*distancesteps-v*(t-1)*timesteps)...
/abslength/1).*sign(z*distancesteps-v*(t-1)*timesteps));
end;

%Justin’s Hyperbolic tanget model strain0(t,z)= coeff* ...
(exp(-zprime/abslength).*(-.5*exp(-v*(t-1)*timesteps/abslength)) ...
-.5*exp(-abs(zprime-v*(t-1)*timesteps)/(abslength)).* ...
tanh((zprime-v*(t-1)*timesteps)/(v*taueph)));
end; %end of main loop

%for a phonon reflection
for t=2:200
z2=1:2000;
zprime2=z2.*.5;
strain2(t,z2)=strain0(t,z2)-strain0(t,4000-z2);
strain3(t,z2)=-strain2(t,(2001-z2))+...
coeff/4*(exp(-zprime2*distancesteps/abslength));
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end;
strain0=strain3;

Perfect crystal substrate Routine

%this is the initial rocking curve calculation
function [data] = initialcurve3()
global gRes gPsi01 gPsiH1 gK gG gBeta gNumber gSin2QB gTanQB gAlpha0;
B=-(1+i*gK);

%main loop
for deltatheta = 1: gNumber
alpha=gAlpha0(deltatheta);
y=((1+gBeta)*gPsi01-gBeta*alpha)/(2*abs(gPsiH1)*sqrt(gBeta));
C=y+i*gG;
if abs((-B/(-C-sqrt(C2̂-B2̂))).̂(-1)) <=1

data(deltatheta) = (-B/(-C-sqrt(C2̂-B2̂))).̂(-1);
else
data(deltatheta) = (-B/(C-sqrt(C2̂-B2̂))).̂(-1);
end;
end;
data=data’;

Multilayer Routine

%This is the superlattice calculation
function [data] = multilayer(strain1, strain2, thickness, startcurve)
global gNumber gRes gPsiH1 gK gG gBeta gPsi01 gSin2QB gTanQB gAlpha0;
start=startcurve’; % initialize substrate
sin2bragg=gSin2QB; tanbragg=gTanQB;
gone=gG; gtwo=gG;
kone=gK; ktwo=gK; B1=-(1+i*kone); B2=-(1+i*ktwo);
alphaone = gAlpha0-gTanQB*gSin2QB*strain1;
yone=((1+gBeta)*gPsi01-gBeta*alphaone)/(2*abs(gPsiH1)*sqrt(gBeta));
C1=yone+i*gone;
alphatwo = gAlpha0-gTanQB*gSin2QB*strain2;
ytwo=((1+gBeta)*gPsi01-gBeta*alphatwo)/(2*abs(gPsiH1)*sqrt(gBeta));
C2=ytwo+i*gtwo;
s1=sqrt(C1.*C1-B1*B1);
s2=sqrt(C2.*C2-B2*B2);
P=(B1*B2-C1.*C2).*tan(s1.*thickness).*(tan(s2.*(thickness)))+s1.*s2;
Q1=C1.*s2.*tan(s1.*thickness);
Q2=C2.*s1.*tan(s2.*(thickness));
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R1=s1*B2.*tan(s2.*(thickness));
R2=s2*B1.*tan(s1.*thickness);
T=(B1*C2-B2*C1).*tan(s2.*(thickness)).*tan(s1.*thickness);
Q=Q1+Q2;
R=R1+R2;
data = ((P-i*Q).*start+(T-i*R))./((T+i*R).*start+(P+i*Q));
data=data’;
removenan = isnan(data);
[m,n] =find(removenan);
data(m)=data(m-1);
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ABSTRACT

Seeing Sound: Dynamical Effects in Ultrafast X-ray Diffraction

by

Matthew F. DeCamp

Chair: Philip H. Bucksbaum

Time-resolved x-ray diffraction has become a very powerful tool in the study

of structural dynamics of solids. The wave nature of x-rays allows the detection

of milliÅngstrom changes in crystalline structure. Coupling the sensitivity of x-ray

scattering with ultrafast pump-probe techniques can provide unprecedented studies

of ultrafast dynamics in solids. This thesis demonstrates how time-resolved x-ray

diffraction can be used to view transient strains in crystalline solids. Several different

x-ray scattering geometries are explored.

In the Bragg scattering geometry, laser generated picosecond acoustic phonons

in single crystal Ge and InSb are analyzed. Comparisons with dynamical diffraction

theory have shown that the accepted theory of laser driven acoustic phonons is

inconsistent with the observed data. It is also observed that the dispersion associated

with pulse propagation is much larger than expected.



In the Laue scattering geometry, studies using single crystal Ge, InSb, and GaAs

have demonstrated a direct coupling between the ultrafast acoustic pulse and the

diffracting x-ray pulse. Qualitative agreement is found between the observed data

and a simple two crystal model. In the two crystal model the acoustic pulse is as-

sumed to be a moving thin interface lying between two unstrained thick crystals.

The resulting moving interface causes time-dependent Pendellösung oscillations in

the diffracted beams. It is also shown that this coupling is dependent on the di-

rection of the acoustic phonon when compared to the reciprocal lattice vector. The

generation of an acoustic pulse causes an ultrafast coherent transfer of population

between the two diffracting beams. The time scale for this diffraction effect ranges

from 10-300ps. Several potential mechanisms describing the physics behind this phe-

nomena are proposed, but exact nature of this diffraction effect is not known and

requires further study.


